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1 GOAL

The increasing health problems caused by traffic-related air pollution have
caught more and more attention nowadays. As a result, analysis and pre-
diction of the air quality are widely studied. Several methodologies, both
deterministic and statistical, have been proposed. In this project we use the
linear model to detect the relationship between the concentration of an air
pollutant at a specific site and traffic volume as well as other meteorological
variables. The procedure of model building and validating is demonstrated
along with a variety of coefficient tests.

2 INTRODUCTION OF DATA

The data are a sub-sample of 500 observations from a data set collected
by the Norwegian Public Roads Administration. The response variable
consist of hourly values of the logarithm of the concentration of NO2 (par-
ticles), measured at Alnabru in Oslo, Norway, between October 2001 and
August 2003. The predictor variables are the logarithm of the number of
cars per hour, temperature 2 meter above ground (degree C), wind speed
(meters/second), temperature difference between 25 and 2 meters above
ground (degree C), wind direction (degrees between 0 and 360), hour of day
and day number from October 1. 2001.

Size : n = 500

Response Variable Y : concentration of NO2

Predictors : k = 7

• x1: number of cars per hour

• x2: temperature 2 meter above ground (degree C)

• x3: wind speed (meters/second)

• x4: temperature difference between 25 and 2 meters (degree C)

• x5: wind direction (degrees between 0 and 360)

• x6: hour of day

• x7: day number
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Table 3.1: Normality test for response variable
Tests for Normality

Test Statistic p-value
Shapiro-Wilk W 0.995731 Pr < W 0.6039

3 METHODOLOGY & RESULTS

3.1 NORMALITY TEST FOR RESPONSE VARIABLE

H0 : y follows normal distribution

H1 : y doesn’t follow normal distribution

Shapiro-Wilk test, proposed by Samuel Shapiro and Martin Wilk 1965,
was conducted to test the null hypothesis. The test statistic is

W = (
∑n

i=1 ai x(i ))2∑n
i=1(xi − x̄)2 (3.1)

where x(i ) is the order statistic, x̄ is the sample mean and the constant ai is
given by

(a1, ..., an) = mT V −1

(mT V −1V −1m)1/2
(3.2)

where m = (m1, ...,mn)T are the expected values of the order statistics of
i.i.d random variables sampled from standard normal distribution and V is
the covariance matrix of those order statistics. The test result is summarized
in table 3.1.

Thus, with p-value is 0.6039 we fail to reject Null hypothesis which means
response variable follows normal distribution. More evidences are shown
in the histogram plot and normal percentile plot listed below.

3.2 CORRELATION ANALYSIS FOR PREDICTORS

The correlation coefficient between two random variables X and Y is de-
fined as:

ρX ,Y = cov(X ,Y )

σXσY
= E [(X −µx)(Y −µY )]

σXσY
(3.3)
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Figure 3.1: Histogram for response variable
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Figure 3.2: QQ-plot for response variable
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Table 3.2: Correlation test for predictors
X1 X2 X3 X4 X5 X6 X7

X1 1.00000 0.07848 0.05951 0.00434 -0.04960 -0.04477 0.01040
X2 1.00000 -0.10547 -0.04630 -0.01578 -0.02564 0.02230
X3 1.00000 -0.04205 0.00242 0.00492 -0.10630
X4 1.00000 -0.01460 -0.01250 -0.01640
X5 1.00000 0.05492 -0.06042
X6 1.00000 0.02780
X7 1.00000

The correlation indicates the degree of linear dependence between these
two variables: it is 1 in the case of an increasing linear relationship; -1 in the
case of a decreasing linear relationship; and the values in between for all
other cases. The closer the coefficient is to either -1 or 1, the stronger the
correlation between the variables.

In table 3.2, we can see that all the values are small enough for us to say
none of the predictor pair is remarkably correlated. So we will keep all of
them in the initial model.

Y =β0 +β1X1 +β2X2 +β3X3 +β4X4 +β5X5 +β6X6 +β7X7 (3.4)

3.3 PRESCREEN OF X VARIABLES

Test of significance for all the X variables is performed for the initial model.
The result shown in figure 3.3 suggests that X5 and X7 are not significant
due to large p-values.

After removing the most insignificant predictor X7, the test is conducted
again and the result is shown in figure 3.4 which suggests removal of X6.

3.4 TEST OF β00

To test whether any of the predictors has impact on response variable, the
following hypotheses are tested.

H0 : β00 = 0
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Figure 3.3: QQ-plot for response variable

Figure 3.4: QQ-plot for response variable
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H1 : β00 6= 0

where β00 = 0 = (β1, ...βk ) is the coefficient parameters of predictors.
When H0 is true the F test statistic will follow a central F-distribution.

Thus, H0 will be rejected if F > Fα,n−k−1 where Fα,n−k−1 is the upper α
percentage point of the (central) F distribution. Alternatively, p-value, the
tail area of the central F distribution beyond the calculated F test statistic,
can be calculated. A p-value whose value is less than α is equivalent to
F > Fα,n−k−1.

By using SAS IML procedure, the result is

p = 0.0007662 < 0.05 (3.5)

which suggests rejection of H0 :β00 = 0.

3.5 BONFERRONI TEST

Typical inferences are performed using the 95% confidence level or 5% sig-
nificance level. In either case, the comparison-wise error rate (CER) is 5%.
The statement "H0" refers to a "null hypothesis" concerning a parameter or
parameters of interest, which we shall always assume to be a strict equality.
Suppose that we have defined a family of inferences (tests or intervals) con-
taining k elements. The Family-wise Error Rate (FWE) is the probability of at
least one erroneous inference. This is defined for simultaneous confidence
intervals as

FWE = P (at least one interval is incorrect)
= 1- P(all intervals are correct)

To simplify the presentation of multiple tests, the p-values are often
displayed as adjusted p-values. By definition, the adjusted p-values for any
hypothesis is equal the smallest FWE at which the hypothesis would be
rejected. Therefore, adjusted p-values are readily interpretable as evidence
against the corresponding null hypotheses, when all tests are considered
as a family. To make a decision on any hypothesis H0 j , we can simply
compare its corresponding adjusted p-values with the desired FWE level.
The Bonferroni procedure rejects any H0 j whose corresponding p-value,
p j , is less than or equal to α/k. This is equivalent to rejecting any H0 j for
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Table 3.3: Multi-Bonferroni test for predictors
p1 p2 p3 p4 p6

Initial model 1 5.2527×10−8 1.623×10−44 1 1.701×10−36

X1 removed 0.0001765 2.8×10−13 1 1.672×10−16

X4 removed 0.0000652 2.055×10−13 8.646×10−16

which kp j is less than or equal to α. Thus kp j is the Bonferroni adjusted
p-value for H0 j . We require any p-value to be less than 1, and therefore
define Bonferroni adjusted p-value for hypothesis H0 more specifically as,

p j =
{

k ·pr ob(ti ,k)
1, if p j ≥ 1

(3.6)

H0 : X j is insignificant in the model if p j >α

H1 : X j is not insignificant in the model if p j ≤α

The rational for this method is the well known Bonferroni inequality.
When it comes to our project, X1, X2, X3, X4, X6 are initially in the model.

We use repeated Bonferroni test to remove any insignificant variable. The
result of multi-Bonferroni test is shown in table 3.3.

In the table, we can see for the model with k = 5, p1 and p4 are the largest
ones. Either of them can be removed at first. We remove X1 for convenience,
then we run the Bonferroni test again with the number of variable is reduced
to k = 4. ItâĂŹs not difficult to find that the p4 are still the largest value. So
we remove X4 in the second step. After removing X4, the Bonferroni test
for the rest of the three variables are far less than .05, which means that
X2,X3,X6 are all significant in this stage.

To validate this assumption, we can do the t-test of the model consisting
of X2,X3,X6 only. The output of SAS GLM in figure 3.5 shows that they are
truly significant within the model, since their p-values are all less than 0.05
which means the null hypothesis that the corresponding predictors are
insignificant in the model should be rejected.

Furthermore, the estimated parameters from SAS output in figure 3.6
suggests the following model,

Y = 5.132332387−0.030364128X2−0.205725423X3−0.058798271X6 (3.7)
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Figure 3.5: Significance test for X2,X3,X6

Figure 3.6: Estimated parameters for X2,X3,X6

3.6 ANOVA TABLE FOR THE FINAL MODEL

SAS IML procedure is used to calculate the ANOVA table shown in table
3.4. The counterpart of SAS GLM out put is shown in figure 3.7. Compare
these two outputs, we can see that they are exactly the same which means
the procedure based on the SAS IML is correct. (The code is included in
Appendix.)

Table 3.4: ANOVA table
Degree of freedom Sum Square Mean Square F statistic

Regression 3 157.1688400 52.3896133 46.04
Residual Error 496 564.3859382 1.1378749

Total 499 721.5547783
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Figure 3.7: ANOVA from SAS GLM

3.7 CONFIDENCE INTERVAL OF β j

For the final model, because β̂ j ∼ N (β j , var (β) j j ),
β̂ j−β j

var (β) j j
has a t-distribution

with n −k −1 degree of freedom, where var (β) j j is the i th diagonal entry
of the covariance matrix of β. So the 95% confidence interval for β j is

[β̂ j − tα/2,n−k−1var (β) j j , β̂ j + tα/2,n−k−1var (β) j j ]. (3.8)

The result from SAS output for β2,β3,β6 is: [-0.044827, -0.015902], [-
0.258825, -0.152626], and [-0.072595 , -0.045002] respectively.

3.8 CONCLUSION

Response variable approximately follows normal distribution. Though
many predictors are significant, under Bonferroni test response variable is
most closely related to three predictors only. The final model with estimated
parameter is

Concentration of NO2 = 5.132332387−0.030364128× temp above ground

−0.205725423×wind speed

−0.058798271×hour of day
(3.9)

This model suggests that the concentration of NO2 is negative proportional
to the temperature above ground and wind speed which means: when
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wind speed is increasing, the density is decreasing; and the higher the
temperature is, the bigger the volume of NO2 inflates and the lower the
density is as a result.

4 APPENDIX

SAS code

/* Normality Test for Y variable */

proc univariate data=no2 normal;

var y; probplot y; run;

/* Correlation of X variables */

proc corr data=no2;

var x1-x7; run;

/* GLM Analysis */

proc glm data=no2;

model y=x1-x6 ; run;

/* IML Analysis */

proc iml;

use no2;

read all var {x1 x2 x3 x4 x6} into x;

read all var {y} into y;

/*print x y; run;*/

n=nrow(x); /* Number of observations;*/

k=ncol(x); /* Number of parameters including the intercept; */

j=j(n,1,1);

x10=j||x;

/* Display the design matrix */

cov_x=inv(x10`*x10);

xpy=x10`*y; /* The vector (X'X)^-1*Y ;*/

beta=cov_x*xpy;

PRINT beta;

/* The estimated regression parameters;*/

/*Table 1 ANOVA for fitting regression*/

/* The fitted values, the residuals, SSE, and MSE ;*/

ssr=beta`*x10`*y; /*SSR= sum of square of residual;*/

dfreq=k+1; /*Degree of freedom of SSR;*/
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print ssr dfreq;

msr=ssr/dfreq; /*Mean square of residual;*/

sse=y`*y-beta`*x10`*y; /* SSE = Sum of squares of residuals;*/

dferr=n-k-1; /* Degrees of freedom of SSE;*/

mse=sse/dferr; /* MSE = SSE/dferror;*/

print msr sse dferr mse;

sst=y`*y; /* SST= sum square of total;*/

dftot=n; /*Degrees of freedom of total;*/

fstat=msr/mse; /* F-statistics; */

print sst dftot fstat;

/*Table 2 ANOVA*/

J=j(n,n,1);

beta00=beta[2:k+1];

xbar_t=j`*x/n;

x_b=(I(n)-J/n)*x;

SSRm=beta00`*x_b`*y;

MSRm=SSRm/k;

print SSRm MSRm;

fstatRm=MSRm/MSE;

print SSE MSE fstatRm;

SSTm=y`*(I(n)-J/n)*y;

print SSTm;

/*Table 3 ANOVA showing in the term mean*/

SSM=y`*J*y/n;

MSM=SSM/1;

print SSM MSM;

fstatM=MSM/MSE;

print SSE MSE fstatM fstatRm;

SST=y`*y;

print SST;

/*Bonferroni Test of beta_j*/

var_beta=MSE*cov_x;

print var_beta;

b_1=beta[2,1]/sqrt(var_beta[2,2]);

b_2=beta[3,1]/sqrt(var_beta[3,3]);

b_3=beta[4,1]/sqrt(var_beta[4,4]);
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b_4=beta[5,1]/sqrt(var_beta[5,5]);

b_5=beta[6,1]/sqrt(var_beta[6,6]);

print b_1 b_2 b_3 b_3 b_4 b_5;

p1=5*probt(b_1,n-k-1);

p2=5*probt(b_2,n-k-1);

p3=5*probt(b_3,n-k-1);

p4=5*probt(b_4,n-k-1);

p5=5*probt(b_5,n-k-1);

print p1 p2 p3 p4 p5;
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