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1 ABSTRACT

Although we already have WinBUGS for posterior sampling, all the com-
putation in WinBUGS runs in a "black-box" and it is almost impossible to
control or modify the internal algorithms for specific needs. One the other
hand, generalized linear mixed models (GLMMs) are getting popular be-
cause of its capability to handle an extraordinary range of complications in
regression analysis. But Bayesian analysis on GLMMS remains a challenging
problem due to the model complexity and MCMC algorithm implemen-
tation. In this paper, both linear mixed models (LMMs) and GLMMs are
studied where GLMMs treated as hierarchical model and the parameters
are assigned in a hierarchy. Gibbs Sampling and Metropolis-Hastings algo-
rithms are implemented in R for different models. And data sets are tested
in both R and WinBUGS for analysis and comparison.

2 INTRODUCTION

There are already several packages released to support special cases in
GLMMs, eg. PROC NLMIXED in SAS and library glmmML in R, and some
others rely on Laplace-type approximation of integrals in computation, eg.
SAS macro glimmix and library glmmPQL in R. Besides that, libraries nlme
and lme4 in R are used heavily for LMMs and GLMMs. But most of them
deal with GLMMs in the frequentist way, and implementation of MCMC
algorithms for Bayesian analysis on GLMMs remains under development.

3 METHODOLOGY

3.1 THE MODELS

Generally, LMMs and GLMMs can be formalized in the following formats.

Linear Mixed models

Y = Xβ+Z u +ε (3.1)

Generalized Linear Mixed models

Y ∼ p(·|θ)

g (θ) = Xβ+Z u +ε (3.2)
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where Xβ is the fixed effect term; Z u is the random effect term; and ε is the
error term; g (·) is a specified link function. And(

u
ε

)
∼ N (

(
0
0

)
,

(
G 0
0 σ2

ε I

)
) (3.3)

where G is the covariance matrix for random effects u and the elements in
error terms ε are independent.

3.2 THE ALGORITHMS

Among MCMC algorithms, there are two fundamental mechanisms: one
simplifies the high dimensional problems by successively generating from
different subsets of target parameters; the other involves an accept/reject
rule to “correct” an arbitrary Markov chain so that invariant distribution
of target distribution is guaranteed. The first one is the spirit of Gibbs
sampler, and the latter one is essentially Metropolis-Hastings algorithm.
There are a lot of ways to apply these two methods and their improved
versions, and they also can be combined for application in many different
ways depending on the problems.

GIBBS SAMPLER

Given the target multivariate distribution π(x) =π(x1, ..., xp ), the Gibbs sam-
plers successively and repeatedly generates samples for each of the random
variables, Xi , from the full conditional distribution (Xi |X1, ..., Xi−1, Xi+1, ..., Xp ).
The samples obtained in this way are guaranteed to converge to the sta-
tionary distribution π(x1, ..., xp ) under mild regularity conditions, Roberts
and Smith (1994) [?]. So for sufficiently large number of iterations, say N ,
the samples, (X (0), ..., X (N )), can be seen as realizations from π(x). The full
algorithm is described as below.

1. Set up initial value, X (0) = (X (0)
1 , ..., X (0)

p ).

2. For iteration k from 1 to N , do the following steps,
for random variable i from 1 to p,

generate sample X (k)
i from (Xi |X1, ..., Xi−1, Xi+1, ..., Xp ).

3. Return the values (X (0), ..., X (N )).
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This is the most widely used version of the Gibbs sampler. The price that
Gibbs samples pays for reducing the dimensionality of random variables
X is slow convergence and high correlation when the components of X
exhibit heavy dependence.

METROPOLIS-HASTING ALGORITHM

Unlike Gibbs sampler, the Metropolis-Hastings algorithm doesn’t require
the ability of generating samples from all the full conditional distributions.
Instead, a proposal or candidate distribution is chosen given the current
value of random variables, X (k). Then the M-H algorithm is defined by two
steps: first, generate a proposal value, X ∗, from the proposal distribution,
q(·, X (k)); second, the proposal value is accepted as the next value with the
probability

α(X (k), X ∗) =
 mi n{ π(X ∗

)q(X (k)
,X ∗

)

π(X (k)
)q(X ∗

,X (k)
)
,1} i f π(X (k))q(X ∗, X (k)) > 0

1 other wi se
;

(3.4)
if it is rejected, then the current value is taken as the next value in the Markov
chain. The full algorithm is described as below.

1. Set up initial value, X (0) = (X (0)
1 , ..., X (0)

p ).

2. For iteration k from 1 to N , do the following steps,
a) generate a proposal value, X ∗ ∼ q(·, X (k))
b) let

X (k+1) =
{

X ∗ i f Uni f (0,1) ≤α(X (k), X ∗)
X (k) other wi se

.

3. Return the values (X (0), ..., X (N )).

The M-H algorithm also pays a price for its flexibility. If the proposal dis-
tribution is poorly chosen, either the acceptance rate is low, or the Markov
chain moves throughout the support of the invariant distribution too slow
(even could be stuck around one place). In both cases, it leads to low effi-
ciency of Monte Carlo sampling. Also, the choice of proposal distribution is
application-dependent. One proposal that works well on one target distri-
bution may be extremely poor on another.
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4 IMPLEMENTATION

In this study, three cases are considered by applying Gibbs Sampler on
LMMS (case 1 and 2) and applying Metropolis-Hasting on GLMMs (case 3).

CASE I

The LMM shown in (3.1) with a simple covariance matrix G =σ2
u I for ran-

dom effects is studied. The prior distributions for parameters are chosen as
the following,

• u ∼ N (0,σ2
u I )

• [β] = 1

• σ2
u ∼ IG(Au ,Bu)

• σ2
ε ∼ IG(Aε,Bε)

where (Au ,Bu , Aε,Bε) are "hyper-parameters" and should be positive in
order to make the priors proper. To construct non-informative and proper
priors, they are set with small values close to zero.

Given the structure of the model and the information of prior, the condi-
tional distributions can be obtained after some calculation.

For coe�cients

[β,u,σ2
u ,σ2

ε |y] ∝ [y |β,u,σ2
ε][β][σ2

ε]

⇒ [β,u|y ,σ2
u ,σ2

ε] ∝ exp{− 1

2σ2
ε

(‖y −Xβ−Z u‖2 + σ2
ε

σ2
u
‖u‖2)}

∼ N ((C T C + σ2
ε

σ2
u

D)−1C T y ,σ2
ε(C T C + σ2

ε

σ2
u

D)−1)

(4.1)

where C = [X , Z ], D = diag(0p+1,1K ) (p is is the number of covariates
in X and K is the number of covariates in Z .)
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For variances

[σ2
ε |y ,β,u,σ2

u] ∝ (σ2
ε)−(u/2+Aε+1)exp{− 1

σ2
ε

(
1

2
‖y −Xβ−Z u‖2 +Bε)}

∼ IG(Aε+ n

2
,

1

2
‖y −Xβ−Z u‖2 +Bε)

(4.2)

where n is the number of observations.

Similarly, we can get

[σ2
u |y ,β,u,σ2

ε] ∼ IG(Au + K

2
,

1

2
‖u‖2 +Bu) (4.3)

Thus, the resulting Gibbs sampler is

1. Set initial values for (σ2
u ,σ2

ε);

2. Sample the coefficients, (β,u) ∼ [β,u,σ2
u ,σ2

ε |y] from (4.1);

3. Sample the variance,σ2
ε ∼ [σ2

ε |y ,β,u,σ2
u] from (4.2) andσ2

u ∼ [σ2
u |y ,β,u,σ2

ε]
from (4.3);

4. return to the 2nd step.

CASE II

The LMM shown in (3.1) is studied in which the random effects are catego-
rized into different groups.

u = (uT
1 , ...,uT

L )T (4.4)

G = blockdiag(σ2
ul I ) (4.5)

where L is the number of groups in u and let ql denote the number of entries
in each ul .

The prior setting is the same the one in to Case I except

σ2
ul ∼ IG(Aul ,Bul ) (4.6)

After conducting similar calculation, the resulting Gibbs sampler for this
LMM is
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1. Set initial values for (σ2
u1, ...,σ2

uL,σ2
ε);

2. Sample the coefficients,

[β,u|y ,σ2
u1, ...,σ2

uLσ
2
ε] ∼ N ((C T C +σ2

εB)−1C T y ,σ2
ε(C T C +σ2

εB)−1)

where B = blockdiag(0p+1G−1);

3. for 1 ≤ l ≤ L, sample σ2
ul ∼ IG(Aul + ql

2 ,Bul + 1
2‖ul‖2)

4. Sample the variance, σ2
ε ∼ IG(Aε+ n

2 , 1
2‖y −Xβ−Z u‖2 +Bε);

5. return to the 2nd step.

CASE III

The GLMM shown in (3.2) is studied. In this case, Yi is binary and its value
is determined by a variable ai : when ai ≥ 0, Yi = 1; when ai < 0, Yi = 0.
Also a = (a1, ..., an)T follow a multivariate normal distribution under the
simplification σ2

ε = 1
a ∼ MV N (Xβ+Z u, I ). (4.7)

So, we will have the conditional distribution for ai

[ai |y ,β,u,σ2
u1, ...,σ2

uL] ∝ {I (ai ≥ 0)}yi=1{I (ai < 0)}yi=0exp{−1

2
(ai−(Xβ+Z u)i )2}

(4.8)
which means ai is truncated from −∞ to 0 when yi = 0 and from 0 to ∞
when yi = 1.

With the help of the results from previous cases, the algorithm for this
model can be constructed.

1. Set initial values for (a,σ2
u1, ...,σ2

uL);

2. Sample the coefficients,

[β,u|y , a,σ2
u1, ...,σ2

uL] ∼ N ((C T C +B)−1C T a, (C T C +B)−1)

where C = [X , Z ], B = blockdiag(0p+1G−1);

3. for 1 ≤ l ≤ L, sample σ2
ul ∼ IG(Aul + ql

2 ,Bul + 1
2‖ul‖2)
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4. for 1 ≤ i ≤ n,

• if yi = 1, sample ai ∼ Truncated Normal((Xβ+Z u)i ,1)−∞,0

• if yi = 0, sample ai ∼ Truncated Normal((Xβ+Z u)i ,1)0,∞

5. return to the 2nd step.

IN R AND WINBUGS

The algorithms are programmed in R. Other than basic packages, these
three packages are used.

mvtnorm : generate random variables with multivariate normal distribu-
tion.

msm : generate random variables with truncated normal distribution.

R2WinBUGS : provide interface between R and WinBUGS.

In the meantime, WinBUGS is used to generate posterior sample as well for
comparison purpose. The WinBUGS code for the first case is shown below.

All the codes for three cases are attached in separate files.

model{

for(i in 1:n){

y[i] ~ dnorm(m[i],taue)

m[i] <- inprod(beta[ ],X[i,])+inprod(b[ ],Z[i,])

}

for(j in 1:(p+1)){beta[j] ~ dnorm(0,1.0E-6)}

for(k in 1:K){b[k] ~ dnorm(0,taub)}

taue ~ dgamma(1.0E-3,1.0E-3)

taub ~ dgamma(1.0E-3,1.0E-3)

}
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Table 5.1: Median of posterior samples
β0 β1 β2 β3 u1 u2 u3 σ2

u σ2
ε

R 0.001 0.715 -0.195 -0.308 0.203 0.074 -0.157 0.032 0.500
WinBUGS 0.000 0.712 -0.196 -0.310 0.199 0.075 -0.155 0.031 0.500

5 RESULTS

CASE I

The summary of posterior samples of the parameters are shown below.

> apply(res,2,summary)

beta[1] beta[2] beta[3] beta[4] b[1] b[2] b[3]

Min. -0.1274000 0.5568 -0.34090 -0.4186 0.08257 -0.02769 -0.308900

1st Qu. -0.0203800 0.6863 -0.21940 -0.3296 0.17710 0.05115 -0.184800

Median 0.0006404 0.7146 -0.19480 -0.3082 0.20260 0.07429 -0.157200

Mean 0.0005011 0.7155 -0.19380 -0.3079 0.20300 0.07414 -0.157100

3rd Qu. 0.0209700 0.7437 -0.16850 -0.2867 0.22950 0.09653 -0.129900

Max. 0.1014000 0.8649 -0.07304 -0.2096 0.33350 0.22220 0.002715

sigma.b sigma.e

Min. 0.002848 0.4011

1st Qu. 0.017690 0.4775

Median 0.031700 0.5003

Mean 0.079800 0.5001

The trace plots for posterior samples are shown in Figure 5.1 and 5.2, and
the density plot is shown in Figure 5.3. We can see that the convergences
for β,u,σ2

ε are very fast and stable and the posterior of σ2
u is more skewed

positively.
The comparison between the results from R and WinBUGS are summa-

rized in Table 5.1 and Figure 5.4 We can see that both the estimated values
and posterior density for all the parameters are significantly similar. Fur-
thermore, the trace plots (Figure 5.5) match very well between results from
R and WinBUGS for σ2

u and σ2
ε with outliers excluded (values that exceed

95% quantile). Same thing happens for β,u as well.
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Figure 5.1: Posterior trace plot for β,u,σ2
ε

Figure 5.2: Posterior trace plot for σ2
u
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Figure 5.3: Posterior density plot for β,u,σ2
ε ,σ2

u

CASE II

The summary of posterior samples of the parameters are shown below.

beta[1] beta[2] beta[3] beta[4] b[1] b[2] b[3]

Min. -0.1065000 0.5852 -0.32710 -0.4172 0.08693 -0.05888 -0.34890

1st Qu. -0.0208900 0.6955 -0.21450 -0.3279 0.18820 0.05346 -0.19510

Median -0.0009028 0.7226 -0.19060 -0.3048 0.21220 0.07671 -0.16820

Mean -0.0002345 0.7231 -0.19090 -0.3053 0.21250 0.07662 -0.16880

3rd Qu. 0.0206900 0.7496 -0.16610 -0.2824 0.23770 0.10090 -0.14300

Max. 0.1071000 0.8652 -0.06789 -0.2013 0.33280 0.19770 -0.03645

sigma.b1 sigma.b2 sigma.b3 sigma.e

Min. 1.812e-02 1.977e-02 1.143e-02 0.4047

1st Qu. 1.522e-01 1.287e-01 1.456e-01 0.4778

Median 3.930e-01 3.436e-01 3.740e-01 0.4993

Mean 3.293e+04 2.760e+01 2.058e+01 0.5007

3rd Qu. 1.363e+00 1.196e+00 1.470e+00 0.5225
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Figure 5.4: Posterior density comparison between R and WinBUGS
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Figure 5.5: Posterior trace comparison between R and WinBUGS
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Max. 6.575e+07 1.840e+04 1.414e+04 0.6298

Figure 5.6: Posterior trace plot for β,u,σ2
ε (Case II)

CASE III

The summary of posterior samples of the parameters are shown below.

beta[1] beta[2] beta[3] beta[4] b[1] b[2] b[3]

Min. -0.20380 -0.34500 -0.32060 -0.295900 -0.34640 -0.24590 -0.15650

1st Qu. -0.01756 -0.15790 -0.14150 -0.009775 -0.18430 -0.05953 0.04219

Median 0.02260 -0.10930 -0.09541 0.029170 -0.14060 -0.01727 0.09139

Mean 0.02066 -0.10700 -0.09584 0.031140 -0.13960 -0.01746 0.09071

3rd Qu. 0.05947 -0.05876 -0.05014 0.072530 -0.09484 0.02372 0.13900

Max. 0.21400 0.42090 0.25870 0.268600 0.10590 0.17640 0.35740

sigma.b1 sigma.b2 sigma.b3
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Figure 5.7: Posterior trace plot for σ2
u (Case II)

Min. 2.123e-02 1.599e-02 1.669e-02

1st Qu. 1.385e-01 1.228e-01 1.345e-01

Median 3.652e-01 3.309e-01 3.250e-01

Mean 2.281e+02 2.106e+01 1.471e+03

3rd Qu. 1.330e+00 1.138e+00 1.189e+00

Max. 2.829e+05 1.407e+04 2.876e+06

6 CONCLUSION

For our data set, the convergences are really quick and stable except for vari-
ance term of random effect σ2

u . More calculation and analysis are needed to
be done in future to diagnose and solve this problem. As shown for case I,
the result from R matches the result from WinBUGS very well which implies
the validation of the algorithm.
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Figure 5.8: Posterior trace plot for β,u,σ2
ε (Case III)

Figure 5.9: Posterior trace plot for σ2
u (Case III)
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