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1 ABSTRACT

Nested Sampling is a new technique to calculate the evidence, Z = P (D|M) =∫
p(D|θ, M)p(θ|M)dθ (alternatively the marginal likelihood, marginal den-

sity of the data, or the prior predictive, Z = ∫
L(θ)π(θ)dθ), in a way that uses

Monte Carlo methods. These integrals are usually very difficult to calculate
for complex models but they play an important role in statistical inference,
for example Bayesian model comparison. Though there are already many
approaches, both sampling-based and deterministic, have been proposed,
nested sampling, first introduced by John Skilling in 2004, has caught a lot
of attention because of its robustness, broad applicability, power on deal-
ing with difficult posterior distributions, and little requirement of manual
tuning. The key technical requirement of nested sampling is an ability to
draw samples uniformly from prior distribution with restriction that the
likelihoods of samples need to be larger than certain value. In this paper, the
basic idea and algorithm of nested sampling is introduced and a practical
implementation in R, including examples and result analysis, is conducted.

2 INTRODUCTION

The primary task is to calculate

Z = evidence =
∫

L(θ)π(θ)dθ (2.1)

where L(θ) is the likelihood function and π(θ) is the prior density of the
unknown parameter(s). Under background model assumptions I , the
probabilistic context of this is usually in the form of Bayes’ theorem:

P (D|θ,I )×P (θ|I ) = P (D|I )×P (θ|D,I )

Likelihood×Prior = Evidence×Posterior

L(θ)×π(θ)dθ = Z ×p(θ)dθ.

(2.2)

If we define the cumulative prior mass as

X (λ) =
∫

L(θ)>λ
π(θ)dθ, (2.3)
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then X (λ) will decrease from 1 to 0 as λ increases. And now the integration
of evidence is transformed from multiple-dimensional parameter space
into one-dimensional axis, see Figure 2.1.

Z =
∫ 1

0
L(X )dX (2.4)

Figure 2.1: The integration of evidence: X is the cumulative prior mass

An example for two-dimensional parameter θ = (θ1,θ2) is illustrated in
Figure 2.2. In two-dimensional parameter plane, each point is mapped
to a point on X -axis within interval [0,1]. And each point on L(X )-curve
represents the corresponding likelihood contour on θ1 −θ2 plane. As the
contour area shrinks to maximum of likelihood, the point on X -axis moves
to 0, because X (Lmax) = ∫

L(θ)>Lmax
π(θ)dθ = 0.
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Figure 2.2: Transformation from two-dimensional parameter plane to one-
dimension
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3 METHODOLOGY

3.1 COMPUTATION WITH MONTE CARLO METHOD

For equation (2.4), one-dimensional integration can be easily approximated
by

Z ≈
m∑

i=1
wi Li (3.1)

where wi = Xi −Xi+1. So the Monte Carlo method to approximate the value
of Z is

1. uniformly generate a sequence of samples for X , say X (1), ..., X (m);

2. map each X (i ) to the corresponding θ(i ) and calculate L(i ) = L(X (i )) =
L(θ(i ));

3. then equation (3.1) can used to approximate Z .

However, we can also work in the opposite direction. Let X1, ..., Xm be
the order sample such that 0 < Xm < ... < X1 < 1 and the corresponding
likelihood and parameters are Li ,θi where Li = L(Xi ) = L(θi ). It is more
natural to directly sample the i th point θi from prior distribution π(θ) , but
with the restriction that L(θi ) > Li−1.

More generally, to obtain Xi , we can sample N points in parameter space
which all satisfy L(θi ) > Li−1 and select the point with lowest L (highest
X ) as the i th point. This procedure provides Xi = ti Xi−1 with P (ti ) =
N t N−1

i where ti ∈ (0,1). For this distribution, we know E(log t) = −1/N
and V ar (log t = 1/N 2). Since individual log t ’s are independent, after i
steps Xi is expected to shrink to log Xi = −(i ±p

i )/N . Thus, in case of a
crude implementation, Xi can be treated as a known value, log Xi =−i /N .

Another trick here is we don’t need to sample N new points at each step.
Instead, we only need to sample one new point, because N−1 points, except
the point with lowest L (highest X ), from the previous step still satisfy the
restriction condition and can be used in current step.

This method is illustrated in Figure 3.1 for the case N = 3. At first step,
three points are generated, labeled as 1, 3, 4. Point 1 has highest likelihood,
so set L1 = L(θ1). Then sample another point under restriction L(θ) > L1

and the generated point is point 2. Replace point 1 with point 2 and find
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the point with highest likelihood, which is point 2, from current N-point
sequence 2, 3, 4. So set L2 = L(θ2). In next step, point 5 is generated
under restriction L(θ) > L2 and it replaces point 2. After five steps, the five
discarded points (1,2,3,4,5) are augmented with the final three survivors
(6,7,8) to approximate the evidence by using equation (3.1).

Figure 3.1: The nested sampling procedure for N = 3 case

3.2 ALGORITHM

The algorithm based on the method discussed in previous section is de-
scribed in below.

1. First: sample N points in parameter-space θ1, ...,θN from prior π(θ),
and set initial values Z = 0, X0 = 1.

2. Loop: for i = 1,2, ...,m

a) find the point θl with lowest likelihood from current N-point
sequence θ1, ...,θN and set Li = L(θl );
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b) set Xi = exp(−i /N ) (or sample ti with P (ti ) = N t N−1
i where ti ∈

(0,1) and set Xi = ti Xi−1);

c) set wi = Xi−1 −Xi (or wi = Xi−1−Xi+1
2 );

d) update Z by following Zi = Zi−1 +wi Li ;

e) sample one point θk from π(θ) with restriction L(θk) > Li and
then replace θl with θk to obtain the new N-point sequence.

3. Last: update Z with addition of Xm(L(θ1)+ . . .+L(θN ))/N .

The last step is based on consideration of boundary effect (more details can
be found in John Skilling’s paper).

3.3 TERMINATION

The simplest and straightforward way to set termination condition for main
loop is to examine the value of current addition∆Zi = wi Li . If it is very small
comparing to current evidence Zi−1, which means the following iterations
are not likely to contribute significantly to the accumulation of Z , then
terminate the loop. Or if an upper bound L ≤ Lmax can be found, the similar
termination condition is to terminate when ∆Z∗

i = wi Lmax ¿ Zi−1.
Another termination condition discussed in Skilling’s paper is: "con-

tinue iterating until the count i significantly exceeds N H" where H =∫
log(dP/dX )dP represents the information that how much of the prior

mass the bulk of the posterior mass contains.

3.4 DIFFICULTY

To sample one point θk from π(θ) with restriction L(θk) > Li is not always
possible. Even when it is possible, after certain steps Li becomes very close
to Lm ax and the potential region of θk in parameter-space that satisfies
L(θk) > Li will shrink to very small region. In this case, if we sample θk ∼
π(θ) in whole parameter-space, it usually takes too long to get a point that
falls in the potential region.

One solution for this difficulty is transforming prior distribution to uni-
form prior and use MCMC algorithm to explore new point. The procedure
is: randomly choose one point from previous N −1 survivors and random

7



walk in parameter-space by certain small distance; use wrap-around or
reflection technique when walking out of the restricted region. In Figure
3.2, assume A,B ,C ,D,E ,G are states in restriction region and F, H , I fall out-
side. So if random walk starts from some state inside of restriction region,
the transitions to outside can be blocked by using wrap-around technique
(when next random walk state is outside we redirect it to certain inside
state that is on boundary of the restriction region) or reflection technique
(redirect it to previous state). Let random walk last long enough, eventually
any specified state in the region will be visited with uniform probability.

Figure 3.2: Wrap-around and redirect on the boundary during random walk

4 IMPLEMENTATION AND RESULTS

4.1 CASE I

The model and the prior are

Yi ∼ N (µ,σ2) (4.1)

µ∼ N (0,100) (4.2)

Two exploration methods are tested:

8



Table 4.1: Performance for exploration method (1)
Step Number CPU Time (second) Estimate of Z

10 0.11 5.920883e-05
15 0.21 0.0002560032
20 1.01 0.003112191
25 326.97 0.02808788

Table 4.2: Performance for exploration method (2)
Step Number CPU Time (second) Estimate of Z

10 0.18 1.536947e-05
15 2.31 0.000693845
20 237.89 0.01182036

(1) searching in whole parameter space without using any other tech-
nique;

(2) start searching from a random survivor point and use Metropolis-
Hasting algorithm with fixed successful accept number 20.

The performance results are summarized in Table 4.1 and 4.2. We can see
that the estimation of Z converges to the true value quicker when using
exploration method (2) than using (1) but in the mean time it takes more
time to obtain the point in each step in method (2). A possible reason for
this phenomena is that: since the number of successful acceptance in M-H
is fixed to 20, the sampling may not be good enough to be proportional to
prior density, which could lead to the fact that the generated point tends to
be “stuck” around where maximum likelihood is. We can also notice that
the searching time increases dramatically after certain steps in method (1)
due to the quick shrinkage of restricted region.

Furthermore, we fix the parameter-space in a rectangle,

µ∼ Unif(−5,5),σ2 ∼ Unif(0,5),

and the results shown in Table 4.3 and Figure 4.1 suggest that after 20 steps
the estimation almost converges to true value.
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Table 4.3: Rectangle parameter region
Step Number CPU Time (second) Estimate of Z

10 0.11 0.02711679
15 0.15 0.09266391
20 10.51 0.1534983
25 90.76 0.1537126

Figure 4.1: The trace plot of X and L
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Table 4.4: Exponential distribution
Step Number CPU Time (second) Estimate of Z

10 0.05 0.01057942
15 0.42 0.01068455
20 71.29 0.01068455

4.2 CASE II

The model and the prior are

Yi ∼ Exp(λ) (4.3)

λ∼ Unif(a,b) (4.4)

The results, shown in Table 4.4 and Figure 4.2 and 4.3, suggests a fast
converge for exponential distribution.

Figure 4.2: The trace plot of X and L (exponential distribution)
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Figure 4.3: The shrinkage of likelihood (exponential distribution)

5 DISCUSSION

As a new computation method, nested sampling is attractive in many as-
pects which includes,

• applicable generally;

• capable to deal with difficult likelihood function and prior densities;

• calculate the evidence (marginal likelihood) and can be extended to
use the posterior samples;

• require very little manual tuning.

However, it still suffer several problems and needs to be improved:

• the searching for potential point in parameter-space could be very
slow in some cases;

• the likelihood function with multiple local modes needs to be taken
care of to make sure all the restricted sub-regions are included during
searching.
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