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1 ABSTRACT

The data from an eye tracking experiment is introduced. Both linear models
and mixed models are used to fit the data. Different covariance structures
for random effects are used. The goodness of fitting is compared for differ-
ent scenarios. Residual analysis for chosen models is also conducted.

2 INTRODUCTION

2.1 THE EXPERIMENT

Schizophrenia is one of the most pervasive of severe psychological diseases.
Current psychological theory suggests the responses from schizophren-
ics suffer from a deficit, which makes them similar to the responses from
non-schizophrenics but relatively slower (e.g. due to motor problems). To
measure the latency of responses, psychologists Prof. Philip Holzman and
Dr. Deborah Levy designed and conducted an eye-tracking experiment. In
the experiment, the head of patient is fixed and use his or her eyes to track a
visual target that moves back and forth along a horizontal line on a screen in
front of him or her. The outcome measurement is called gain ration, which
is eye velocity divided by target velocity, and it is recorded repeatedly at the
peak velocity of the target. Also, there are three types of different conditions
under which the experiment is conducted. The first type is PS (plain sine),
which means the target velocity is proportional to the sine of time (figure
2.1) and the color of the target is plain. The second condition is CS (color
sine), which means the target moves in the same as in PS but the colors of
target keep changing from white to orange or blue. The third condition is
TR (triangular) in which the target moves at a constant speed equal to the
peak speed of PS (figure 2.2) and the color of target is always white.

2.2 THE DATA SET

The data set collected from the experiment has 60 observations each of
which consist of the results from a 11-cycle-per-trial eye tracking experi-
ment. For three types of conditions, these observations are distributed as:
PS=34, CS=17, TR=9. And there are 31 patients (22 female and 9 male) in
the experiments.
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Figure 2.1: Target movement for PS and CS

Figure 2.2: Target movement for TR

3



Table 2.1: Sample data for 3 trials [sex: 0=male, 1=female]
ID Sex Type Cycle 1 Cycle 2 ... Cycle 11
7 1 PS 0.935 0.933 ... 0.883

12 0 PS 0.952 1.040 ... 0.992
12 0 CS 1.030 1.010 ... 1.010

Sample data for 3 trials is showed in table 2.1. The result for the first
patient is shown in figure 2.3 and the result for all the patients regarding to
sex and condition type is shown in figure 2.4.

Figure 2.3: The results for the first patient

3 METHODOLOGY & RESULTS

The data introduced in previous section is a typical repeated measurement
data in which each patient is tested for multiple trials under different con-
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Figure 2.4: The results for the all patients (categorized by "Sex" and "Type")
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ditions and for each trial the patient is tested for 11 cycles. The interest of
model building is to find out how the response time varies regarding to in-
dividual patient, the gender, the experimental condition, and the repeated
cycles. The final goal of this study is to test a variety of models and identify
the best model that explains the data well.

3.1 MODELS

Both linear and mixed models are proposed in the first place. The general
forms for these models are shown in below.

Linear models

Y = Xβ+ε (3.1)

yi =β0 +β1xi 1 + . . .+β1xi p +εi (3.2)

Mixed models

Yi = Xiβ+Zi bi +ε (3.3)

yi j =β0 +β1xi 1 + . . .+β1xi p +b1i z1i + . . .+bki zki +εi j (3.4)

where

• i indicates the i th patient;

• j indicates the j th repeated measurement;

• Xβ indicates the fixed effect;

• Z b indicates the random effect;

• ε indicates error term.

and bi ∼ N (0,D), εi ∼ N (0,Σ). bi and εi are statistically independent and
their covariance matrix could have different structures.
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Table 3.1: Linear model fitting [s=sex, t=type, c=cycle]
Model Linear terms Interaction Log-likelihood AIC

1 s+t null 546.806 -1083.611
2 s+t s*t 558.759 -1103.518
3 s+t+c s*t 560.743 -1105.486
4 s+t+c s*c 549.368 -1082.737
5 s+t+c s*c 549.024 -1084.048
6 s+t+c s*t+s*c+t*c 562.140 -1098.280

3.2 AIC AND LOG-LIKELIHOOD

AkaikeâĂŹs Information Criterion (AIC), developed by Hirotsugu Akaike, is
a measure of relative goodness of fit of an estimated statistical model. The
AIC is defined as

AIC =−2log(L)+2k (3.5)

where k is the number of parameters in the model and L is the maximized
value of the likelihood function for the estimated model. For model selec-
tion, AIC rewards the goodness of fit and in the meantime includes a penalty
for model complexity (the number of parameters). This penalty reduces the
danger of overfitting. In general case, lower AIC stands for better fit.

3.3 RESULTS

3.3.1 LINEAR MODELS

First, six linear models in table 3.1 are fitted. By comparing Log-likelihood
and AIC, two models (model 3 and 6) have better performance than others.
However, in these models some estimated coefficients are not significant
(p − value > 0.05). And from further analysis we will see linear models
indeed cannot fit this data set well.

3.3.2 MIXED MODELS

Then, six mixed effect models in table 3.2 are fitted using maximum like-
lihood estimation. And from the fitting results, we found that "sex" and
"typePS", especially "sex", are not significant (p − value > 0.05).
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Table 3.2: Mixed models fitting [i=intercept, PS=typePS]
Model Fixed effect Random effect Log-likelihood AIC p − value > 0.05

1 s+t i 824.260 -1636.520 s
2 s+t c 743.860 -1457.721 s
3 s+t i+c 842.505 -1669.010 s
4 s+t+s*t i 828.327 -1640.654 s, s*PS
5 s+t+s*t c 751.699 -1487.398 PS, s*PS
6 s+t+s*t i+c 847.052 -1674.104 s

Table 3.3: Mixed models without "sex" [t=type, c=cycle, i=intercept]
Model Fixed effect Random effect Log-likelihood AIC p − value > 0.05

1 t i 823.699 -1637.397 null
2 t c 743.560 -1477.120 null
3 t i+c 841.966 -1669.933 null

So, "sex" is removed from the model and another three mixed effect
models without "sex" are fitted. From the result in table 3.3, we can see
that none of these three models contains insignificant term and both Log-
likelihood and AIC suggest Model 3 is the best model.

Furthermore, the best mixed effect model is reconsidered by fitting model
with four different covariance structures. The result of Log-likelihood and
AIC, shown in table 3.4, suggests AR(1) is the covariance structure that fits
the data best.

Thus, the best model at this stage is the mixed model with AR(1) covari-
ance structure, shown in (3.6).

Table 3.4: Mixed effect models with different covariance structures
Covariance Structure Log-likelihood AIC

Compound Symmetric 841.966 -1667.933
AR(1) 867.633 -1719.267

Linear Spatial 861.982 -1707.924
Gaussian Spatial 862.187 -1708.374
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Table 3.5: Estimation of the fixed effect terms
Est. value Std. error DF T-value p-value

Intercept 0.848 0.017 627 50.333 0e+00
typePS 0.033 0.009 627 3.684 2e-04
typeTR -0.115 0.013 627 -8.744 0e+00

Table 3.6: Comparison of prediction efficiency
Model LM3 LM6 MM+AR(1)
MSE 0.0789 0.0787 0.0439
MAE 0.0107 0.0107 0.0034

yi j = 0.848+0.033× typePS−0.115× typeTR+bi 0 +bi 1 ×cycle+εi j (3.6)

where (
bi 0

bi 1

)
∼ N (

(
0
0

)
,

(
0.00755 −0.23300
−0.23300 0.00003

)
)

and the parameter for AR(1) structure is p̂ = 0.292. The details of fixed effect
terms are shown in table 3.5.

3.3.3 PREDICTION ERROR AND RESIDUAL ANALYSIS

Both mean of squared errors of prediction (MSE) and mean of absolute
errors of prediction (MAE) are used to compare linear model 3 and 6 (in
table 3.1) and the best mixed model. The result is shown in table 3.6, which
clearly suggests that the best mixed model has much better prediction
efficiency.

MSE = 1

n

n∑
i=1

(yi − ŷi )2 (3.7)

M AE = 1

n

n∑
i=1

|yi − ŷi | (3.8)

The scatter-plots (figure 3.1) between true Y and predicted Y for LM 6
and the best mixed model reveal the result more clearly: the scatter dots for
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the best mixed model spread much closer around the perfect-predict-line
(red line) than LM 6. And the residual-plots with 3σ bound (figure 3.2)
confirm the conclusion : residual dots for the best mixed model spread
much closer around zero-residual-line (middle red line) than LM 6; and 3σ
bounds (green lines) for best mixed model is much narrower than LM 6.

4 CONCLUSION

From the results of model fitting and comparison, we can conclude that
the mixed model fits data much better than linear model for two possible
reasons: first, there exists random effects that come from repeated mea-
surements; second, each trial of the experiment consists of 11 continuous
cycles and AR(1) covariance structure can capture correlations between
these cycles. Also, "sex" doesn’t have significant influence on gain ratio
measurement. However, gain ratio measurement does vary for different
types of conditions under which trials are conducted.

5 APPENDIX

Some R output (the complete source code is attached in separate file)

> library(nlme)

> gr.ar1 <- lme(gr~type,data=eye.dat,

random=~(cycle)|id,method="ML",corr=corAR1())

> summary(gr.ar1)

Linear mixed-effects model fit by maximum likelihood

Data: eye.dat

AIC BIC logLik

-1719.267 -1683.329 867.6333

Random effects:

Formula: ~(cycle) | id

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
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Figure 3.1: True vs. Predicted Y

LM 6

The best mixed model
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Figure 3.2: Residual plots

LM 6

The best mixed model
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(Intercept) 0.086896731 (Intr)

cycle 0.005786277 -0.233

Residual 0.062234969

Correlation Structure: AR(1)

Formula: ~1 | id

Parameter estimate(s):

Phi

0.307535

Fixed effects: gr ~ type

Value Std.Error DF t-value p-value

(Intercept) 0.8480172 0.016848298 627 50.33251 0e+00

typePS 0.0332751 0.009032632 627 3.68388 2e-04

typeTR -0.1145947 0.013105869 627 -8.74377 0e+00

Correlation:

(Intr) typePS

typePS -0.338

typeTR -0.249 0.429

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-4.54000150 -0.49944216 0.06486762 0.58586233 3.04486906

Number of Observations: 660

Number of Groups: 31
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