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1 ABSTRACT

In this paper, common MCMC algorithms are introduced including Hastings-
within-Gibbs algorithm. Then it is applied to a hierarchical model with sim-
ulated data set. “Fix-scan” technique is used to update the latent variables

in the model. And the results are studied to explore the problems of the

algorithm.

2 A SHORT INTRODUCTION OF MCMC

Markov Chain Monte Carlo (MCMC) algorithms are now widely used in all
areas of statistics due to its flexibility and generality. The problems that
MCMC addresses are from a broad range of diverse disciplines, including
physics, engineering, computer science, mathematics and statistics. Here
we focus on the problem that involves generating samples from a probability
distribution, say 7 (x). Although the exact form of the function 7 (-) is known,
direct generating may be difficult or impossible perhaps because of the
complexity of the function form of 7(x) or the high dimensionality of x.
MCMC resolve these difficulties by instead generating from a Markov chain
whose invariant distribution is 7 (-).

Among MCMC algorithms, there are two fundamental mechanisms: one
simplifies the high dimensional problems by successively generating from
different subsets of x; the other involves an accept/reject rule to “correct” an
arbitrary Markov chain so that invariant distribution of 7 (-) is guaranteed.
The first one is the spirit of Gibbs sampler, and the latter one is essentially
Metropolis-Hastings algorithm. There are a lot of ways to apply these two
methods and their improved versions, and they also can be combined for
application in many different ways depending on the problems.

2.1 GIBBS SAMPLER

Given the target multivariate distribution 7 (x) = 7w (xy, ..., Xp), the Gibbs sam-
plers successively and repeatedly generates samples for each of the random
variables, X;, from the full conditional distribution (X;| Xy, ..., Xij—1, Xi+1, ..., Xp).
The samples obtained in this way are guaranteed to converge to the sta-
tionary distribution 7 (xy, ..., Xp) under mild regularity conditions, Roberts



and Smith (1994) [8]. So for sufficiently large number of iterations, say N,
the samples, (X©@, ..., X)), can be seen as realizations from 7 (x). The full
algorithm is described as below.

1. Set up initial value, X© = (X{O), - X;(ym)-

2. For iteration k from 1 to N, do the following steps,
for random variable i from 1 to p,
generate sample Xlgk) from (X;1Xy,..., X;j—1, Xi+1, o Xp).

3. Return the values (X©@, ..., X)),

This is the most widely used version of the Gibbs sampler, referred as “DUGS”
in Roberts and Sahu (1997) [10], in which the components are updated in
a natural ordering. The second way to update components in reverse di-
rection p,p —1,...,1, referred as “REGS”. The third way is “RSGS”, in which
we first generate a uniform value i from {1, ..., p} then update X; and re-
peat this p times. The last one is “RPGS”, in which a random permutation
Z = (21, 2p) of {1,..., p} is generated to determine the order of updating.
Roberts and Sahu (1997) [10] studied the rates of convergence for these
updating strategies for Gaussian target distributions.

The price that Gibbs samples pays for reducing the dimensionality of
random variables X is slow convergence and high correlation when the
components of X exhibit heavy dependence. Detailed description of the
relationship between correlation and convergence can be found in Roberts
and Sahu (1997) [10]. More details about Gibbs sampler can be found in
Gelfand (2000) [6] and Gentle (2004) [7].

2.2 METROPOLIS-HASTINGS ALGORITHM

Unlike Gibbs sampler, the Metropolis-Hastings algorithm doesn’t require
the ability of generating samples from all the full conditional distributions.
Instead, a proposal or candidate distribution is chosen given the current
value of random variables, X(®. Then the M-H algorithm is defined by two
steps: first, generate a proposal value, X*, from the proposal distribution,
qgi-, X (k)); second, the proposal value is accepted as the next value with the



probability

X" X® X" - (k) x y(k)
1 if (X X5 X >0
2 X®) g X", X% bifaXqt ) ;

1 otherwise

a(X(k),X*) _ min{

(2.1
ifitis rejected, then the current value is taken as the next value in the Markov
chain. The full algorithm is described as below.

1. Set up initial value, X = (X (0)"“’Xr()0))'

2. For iteration k from 1 to N, do the following steps,
a) generate a proposal value, X* ~ g(-, X®)
b) let

ks _ | X if Unif(0,1) < a(X®,x*)
XK otherwise '

3. Return the values (X©,..., X)),

The M-H algorithm also pays a price for its flexibility. If the proposal dis-
tribution is poorly chosen, either the acceptance rate is low, or the Markov
chain moves throughout the support of the invariant distribution too slow
(even could be stuck around one place). In both cases, it leads to low effi-
ciency of Monte Carlo sampling. Also, the choice of proposal distribution is
application-dependent. One proposal that works well on one target distri-
bution may be extremely poor on another.

RANDOM WALK PROPOSAL

One family of proposal distributions is given by g(X*, X) = q(X* — X). This
is equivalent to drawn samples from X* = X + z, where z follows the distri-
bution ¢(-). Since the proposal is equal to the current value plus a “noise”,
this algorithm is called random walk M-H. The common choices of g(-)
include multivariate normal distribution and multivariate t distribution.

INDEPENDENCE PROPOSAL

Hastings (1970) [5] introduced a second family of proposal distributions,
q(X*,X) = q(y). Ttis usually referred as independence M-H, because the



proposal is drawn independently of the current value X®. For this proposal
to work and not get stuck in the tails of 7(-), it is necessary that g(y) has
thicker tails than 7z ().

TAILORED PROPOSAL

Chib and Greenberg (1994, 1995) [1] [2] suggested to match the proposal
distribution to the target by using a multivariate normal or multivariate
t distribution which has same location for mode as target does and the
dispersion given by inverse of the Hessian evaluated at the mode. This
proposal distribution can be written as q(-) = f(-|m, V) where

m=argmaxlogn(x) (2.2)

_Ozlogn(x) 1

V=t-——=—lilm - (2.3)

3 HASTINGS-WITHIN-GIBBS ALGORITHM

3.1 GENERALIZED LINEAR SPATIAL MODELS

When it is important to model non-Gaussian sampling mechanism or a
non-Gaussian distribution of response random variable is of interest, a
more flexible and useful model frame should be employed — generalized
linear spatial model (GLSM), first proposed by Diggle et al. (1998) [3]. The
complete model specification is

Yz|S(xz)~P(J/z|lJz); izlv'--;n; (3-1)
pi=g (S(x)
S(x) ~MVN(DB,X)

where

- response variables Y; are conditional independent and follow a spe-
cific distribution p(-) with mean y;;

- as before, S(x;) belongs to a stationary Gaussian process with mean
structure D f and covariance structure X;

- g7 1() is a specific link function;



- D is a known covariate matrix usually related to locations while g is
its coefficient vector (D together determines the “spatial trend” in
response variables, Diggle and Ribeiro 2010 [4] section 3.6);

- 3 is a variance-covariance matrix with entries o;; = 0%p(u;;): 0 is a
unknown constant variance and p (u; ;) belongs on one of the common
families of correlation function.

Note that this model is also known as spatial generalized linear model
(SGLM), and it is included in generalized linear mixed models category
since the Gaussian process S(x;) can serve as random effects.

THE POISSON LOG-SPATIAL MODEL

As the name implies, this model has logarithm link function and the condi-
tional distribution of each response variable Y; is Poisson. The complete
model specification is

YiIS(x;) ~ Poisson(-|y;) (3.2)
logu; = S(x;)
S(x)~MVN(DB,Z).

where Y; are conditional independent given the latent variables S;; D is a
known covariate matrix usually related to locations; while f is its coefficient
vector and D determines the “trend” in response variables (Diggle and
Ribeiro 2010 [4] section 3.6).

This model is naturally a good candidate for count data. For Rongelap
Data in which the response variables are photon emission counts Y; over
time-periods ¢; atlocations x;. The Poisson log-linear model can be easily
adopted,

logu; =logt; + S(x;) 3.3)

with powered exponential correlation function as shown in Diggle et al.
(1998) [3].

3.2 MCMC rForR GLSM

For the model of interest — GLSM, full conditional distributions need to be
obtained before MCMC algorithms can be conducted. Now let’s consider
the details of each of these conditional distributions.



First, the structure of GLSM implies that

p(Y16,5) =[] p(¥i16,S) (3.4)

for which it follows that

p1S,Y) o< [ p(Yil6, )7 (6) (3.5)

where 7(0) is the prior distribution of 6.
Second, if let () be the prior distribution of 17, Bayes’ Theorem immedi-

ately implies that
p@1S) o< p(Simz(m). (3.6)

Finally, the conditional distribution for S is

p(S10,n,Y) x p(Y10,S)p(Sin). (3.7)

By taking a deeper look at equation (3.7) and considering that the condi-
tional distribution p(S|n) follows multivariate Gaussian, the full conditional
distribution of each latent variable S; is

p(SilS-1,0,1n,Y) o< p(Y16,8) p(SilS-i,n) (3.8)
in which p(S;1S-;,n) reduces to normal distribution

[SilS—in] ~ N(= }_ Qi;S;Q; Qi) (3.9)
Jj#i
where Q;; is the (i, j) element of the inverse matrix of Z.
Following equations (3.4), (3.5), (3.6) and (3.8), the “fixed-scan” Hastings-

within-Gibbs algorithm, used in Diggle et al. (1998) [3], is described as
below.

1. Step 0: choose initial value for 8,7 and S (for the Poisson log-spatial
model S(x;)© = log(Y; +0.01) — d(x;)'n?)
2. Step 1: update all the components of n

a) choose a proposed value ' from prior p(n) (uniform prior was
used by Diggle et al.)



p(Sin")
p(Sin)’

b) accept n’ with probability min{ 1}, otherwise keep n

3. Step 2: update S one by one for all locations

a) choose a proposed value S;. for the ith location from p(S;. 1S—i,1m)

p(YilS,,6)

b) accept S;. with probability mi n{m, 1}, otherwise keep S;

c) repeatforall S;,i=1,...,n

4. Step 3: update all the components of 6

a) choose a proposed value 0’ from proposal distribution p(6'|6)

p(Y16',8)p616"

b) accept 6’ with probability Mmint g5 ,070)

1}, otherwise keep 6

3.3 RESULTS FOR SIMULATED DATA

One data sets, named as “data45” and shown in figure 3.1, is simulated
from the Poisson log-spatial model with matern correlation function. The
parameters are Df = f=0.5,02=2,¢p=0.2,x = 1.5.

By using the MCMC algorithm described in previous section on true
model, we generated a Markov chain for 8,02, ¢ while x = 1.5 is fixed. The
first 1000 iterations were discarded as “burn-in” period, and every 100*"
iteration of the following 11000 iterations were stored which provided a
sample of 1100 values from the posterior distribution. The illustration of
the chains and the approximated densities are show in figure 3.2, and the
autocorrelation for each parameter and the cross-correlation among them
are shown in figure 3.3 and 3.4. Table 3.1 shows the mean, median and 95%
interval for the posterior samples.

Table 3.1: Summary of the posterior samples of 8,02, ¢ for “data45”.

parameter true value posterior mean posterior median 95% interval

B 0.5 0.65 0.66 [-0.08, 1.26]
o? 2.0 1.52 1.39 [0.59, 2.86]
¢ 0.2 0.13 0.13 [0.08, 0.19]
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Figure 3.1: “data45” data: a simulated data set from the Poisson log-spatial
model in a 10 x 10 unit grid.



4 CONCLUSION

From the results of “data45”, we can clearly see several problems suffered
by the Hastings-within-Gibbs algorithm,

1. slow mixing and strong autocorrelation: the chains for § have strong
autocorrelation, figure 3.3, (autocorrelations for latent variables S; are
also strong);

2. significant dependence: cross-correlations among o2, ¢, k, figure 3.4;

3. heavy computational work: each latent variable S; is updated individ-
ually during which expensive matrix operations are needed.

Thus, the Hastings-within-Gibbs algorithm requires a lot of computa-
tional work, slow mixing and inaccurate. It is not surprising that it usually
doesn’t work properly for GLSM, especially when the number of latent
variables is large. To resolve these problems and improve the algorithm,
addition techniques are required in future study.
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Figure 3.2: The Markov chains and approximated densities for posterior
samples of S, o2, ¢ for “data45”.
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Figure 3.3: The autocorrelation for posterior samples of 8,02, ¢ for “data45”.
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Figure 3.4: The cross-correlation among posterior samples of 8,02, ¢ for
“data45”.
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