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1 ABSTRACT

In this paper, three important techniques are discussed with details: 1)
group updating scheme; 2) Langevin algorithm; 3) data-corrected parame-
terization. They largely improve the performance of Hastings-within-Gibbs
algorithm. And these improvements are illustrated by applying them on a
hierarchical model with Rongelap data.

2 INTRODUCTION

Generally, Hastings-within-Gibbs algorithm suffers several problems when
applied to hierarchical models,

1. poor convergence: the chains for second layer parameters don’t con-
verge even for a large number of iterations;

2. slow mixing and strong autocorrelation: the chains for latent variables
and coefficients of predictors have strong autocorrelation;

3. significant dependence: cross-correlations among latent variables
and between hyper-parameters are large;

4. heavy computational work: each latent variable S; is updated individ-
ually during which expensive matrix operations are needed.

Thus, the Hastings-within-Gibbs algorithm requires a lot of computa-
tional work, slow mixing and inaccurate. It is not surprising that it usually
doesn’t work properly, especially when the number of latent variables is
large.

In this paper, the following three techniques are discussed with details to
resolve the problems in the algorithmic perspective.

e Group updating scheme: improve mixing, reduce autocorrelation and
computation by updating related components in blocks.

e Langevin algorithm: improve convergence by including the infor-
mation of the gradient of the target distribution into the proposal
distribution.



» Data-corrected Parameterization: improve convergence and reduce
autocorrelation by allowing flexible transformation of components
based on the data.

3 THE HIERARCHICAL MODEL

To validate the efficiency of the proposed techniques, one hierarchical
model is used as an example, which is generalized linear spatial model
(GLSM), first proposed by Diggle et al. (1998) [9]. The complete model
specification is

YilS(xi) ~ p(yilps), i=1,..,n; (3.1)
pi=g " (S(x:)
S(x) ~ MVN(DB,X)

where

- response variables Y; are conditional independent and follow a spe-
cific distribution p(-) with mean y;;

- as before, S(x;) belongs to a stationary Gaussian process with mean
structure D and covariance structure X;

- g71() is a specific link function;

- D is a known covariate matrix usually related to locations while g is
its coefficient vector (D together determines the “spatial trend” in
response variables, Diggle and Ribeiro 2010 [10] section 3.6);

- 3 is a variance-covariance matrix with entries 0;; = 0?p(u;;): 0 is a
unknown constant variance and p(u; ) belongs on one of the common
families of correlation function.

Note that this model is also known as spatial generalized linear model
(SGLM), and it is included in generalized linear mixed models category
since the Gaussian process S(x;) can serve as random effects.

THE POISSON LOG-SPATIAL MODEL

As the name implies, this model has logarithm link function and the condi-
tional distribution of each response variable Y; is Poisson. The complete



model specification is

YiIS(x;) ~ Poisson(-|y;) (3.2)
logu; = S(x;)
S(x) ~MVN(DB,X).

where Y; are conditional independent given the latent variables S;; D is a
known covariate matrix usually related to locations; while f is its coefficient
vector and D determines the “trend” in response variables (Diggle and
Ribeiro 2010 [10] section 3.6).

This model is naturally a good candidate for count data. For Rongelap
Data in which the response variables are photon emission counts Y; over
time-periods ¢; atlocations x;. The Poisson log-linear model can be easily
adopted,

logu; =logt; + S(x;) 3.3)

with powered exponential correlation function as shown in Diggle et al.
(1998) [9].

4 GROUP UPDATING

In Gibbs sampler, random variables can be partitioned into groups (blocks).
For example,

X = (xl,...,xp) — (Y ¥y) 4.1)

where the ith groups, y;, contains r; <1 components and }.;_, r; = p. Then
the groups are updated by following the procedure of Gibbs sampler.

It is generally believed that grouping (blocking) of the components leads
to faster convergence rate, as indicated in Amit and Grenander (1991) [1]
“the larger the blocks that are updated simultaneously - the faster the con-
vergence”, because grouping “moves any high correlation ... from the Gibbs
sampler over to the random vector generator” (Seewald 1992 [29]). Liu
(1994) [18] and Liu et al. (1994) [19] revealed the benefit of grouping strat-
egy (as well as collapsing) in the use of three-component Gibbs samplers.
Roberts and Sahu (1997) [27] provided theoretical results on the role of
grouping in the context of Gibbs Markov chains for multivariate normal
target distributions. They proved that the grouped Gibbs sampler, DUGS



more specifically, has a faster convergence rate if all partial correlations of a
Gaussian target density are non-negative. However, it is necessary to point
out that group updating may demand more computational effort and even
reduce the convergence rate in certain case as shown in Whittaker (1990)
[31].

As a general rule, highly correlated components are candidates to be
grouped, Gentle et al. (2004) [16]. In GLSM, random effects S; are natural
choice because they are highly correlated and drawing samples from the
posterior distribution p(S|Y,0,n) is achievable via Metropolis-Hastings al-
gorithm without too much extra computational effort. Actually, by group
updating S instead of “fix-scan” one by one, overall computational work is
significantly reduced due to large number of latent variables in GLSM. The
components of f can be updated in one group as well if there are more than
one coefficients.

5 LANGEVIN-HASTINGS ALGORITHM

5.1 WEAKNESS OF RANDOM WALK ALGORITHM

Though random walk algorithm is the most commonly used Metropolis-
Hastings algorithm due to its easy implementation for many diverse prob-
lems, it suffers slow convergence frequently because of two reasons.

First, its efficiency depends crucially on the scaling of the proposal density.
If the variance of proposal distribution is too small, the Markov chain will
converge slow because of the small moves of increments. And if the proposal
variance is too large, the acceptance rate of the moves will be too small. For
this issue, a few practical rules of thumb was proposed to provide guidelines
for scaling the proposal, Besag and Green (1993) [2] and Besag et al. (1995)
[4]. And Roberts et al. (1997) [26] proved that optimal performance is
achieved under quite general conditions when “tune the proposal variance
so that the average acceptance rate is roughly 1/4”.

The second reason is that it conducts moves around the current point by
following proposal distributions and completely ignores all the information
in target distributions.



5.2 LANGEVIN ALGORITHM

In contrast to random walk algorithm, Langevin algorithm utilizes local
information of target density and can be significantly more efficient, espe-
cially in high dimensional problems.

Derived from diffusion theory (Grenander and Miller 1994 [17] and Phillips
and Smith 1996 [23]), the basic idea of this approach consists of two steps:
first, seeking a diffusion equation (or a stochastic differential equation)
which produces a diffusion (or continuous-time process) with stationary
distribution 7r; and then discretizing the process for implementation of the
method. More specifically, the Langevin diffusion process is defined by the
stochastic differential equation

1
dX[: dBt+§v10g7l'(Xt)dt (51)

where B; is the standard Brownian motion. This process leaves 7 as its
stationary distribution. Roberts and Rosenthal (1998) [28] also stressed that
the Langevin diffusion in (5.1) is the only non-explosive diffusion which is
reversible with respect to 7.

To implement the diffusion algorithm, a discretization step is required
where (5.1) is replaced by a random walk like transition

0.2

x(t+1) — x(t) + 7 vlogn(xm) +0€s (52)

where €; ~ Ny, (0,1p) and o2 corresponds to the step size of discretization.
However, the Markov chain (5.2) could be very different from that of original
diffusion process (5.1) and Roberts and Tweedie (1995) [25] showed that
the chain (5.2) may be transient which makes 7 no longer the stationary
distribution.

To correct this negative behavior, Besag (1994) [3] suggested to apply M-
H acceptance/rejection rule on moderating the discretization step, which
means (5.2) is treated as a proposal in M-H algorithm. Thus the full Langevin
Algorithm is described as below.

1. Given X¥, arandom variable X* is proposed by

2
X*= X0 4 % vlogln (XD} + e, (5.3)

where o is user-specified parameter.



2. Set XD = X* with probability

T(X*)g(XD, X*)
n(XD)g(X*, X0)

a = min{l, } (5.4)

where 9

(x,x*) o expl ! Ix—x* — L wlogn ()2 (5.5)
, X ox expl-— llx—x" —— : :
q Pl-5 5 vlog

Otherwise, set X+ = x(®

As a result, this algorithm includes the gradient information of the target
density into the proposal density. Roberts et al. (1998) [28] showed that
the optimal asymptotic scaling is achieved when the acceptance rate of
this algorithm is tuned to around 0.574. Furthermore, they suggested the
proposal variance should scale respect to the dimension as p~'/3 and thus
O(p'/3) steps are required to converge comparing to O(p) steps require by
random walk algorithms for the same class of target densities. So the benefit
of using Langevin algorithm increases as the dimension increases, which
is desired for implementation in GLSM considering large number of latent
variables are usually group updated.

To apply Langevin algorithm on updating the group of latent variables S
in GLSM, the gradient of target density usually can be obtained. In the case
of difficult settings, numerical derivatives of exact gradient can be employed.
In practice, Christensen et al. (2006) [8] suggested that choosing variance of
discretization o = {2/ p'/3 with [ = 1.65 leads to optimal performance of the
algorithms. Note that the Langevin algorithm is also desired for updating
the group of coefficients .

6 PARAMETERIZATION

6.1 CPv.s. NCP

It has been well recognized that convergence of MCMC methods, espe-
cially when using Gibbs sampler and related techniques, depends crucially
on the choice of parameterization, Roberts and Sahu (1997) [27] and Pa-
paspiliopoulos et al. (2007) [22].

Considering a hierarchical model in which Y represents data, X denotes
the hidden layer and n denotes the unknown hyperparameters. The data Y



is independent of the parameters 5 conditional on X. This relationship can
be revealed as follow
n—X—Y. (6.1)

This known as centered parameterization (CP), and the MCMC methods
for generating samples from the posterior distribution p(X,n|Y) can be
conducted in two steps,

1. sample n from p(n|X);
2. sample X from p(X|n,Y).

From a modeling and interpretation perspective, CP is naturally used as a
starting point. Plus, the independent property of the conditional posterior
p@MIX,Y) = p(n|X often leads to easy sampling of 7. And the analysis in
Gelfand et al. (1995 and 1996) [12][13] showed that centered parameteri-
zation improved convergence for location parameters in a broad class of
normal linear mixed models and generalized linear mixed models.

However, considering X and 7 are generally strongly dependent a pri-
ori, the data Y need to be strong informative about X to diminish this
dependence. Papaspiliopoulos et al. (2007) [22] also showed a situation
that when the data are informative about 7 they still cannot diminish the
prior dependence between X and 7. Thus, there are many situations where
the posterior dependence between X and n is prohibitively strong that
non-centered parameterization (NCP) is needed.

In NCP, a parameterization of an augmentation scheme X is defined by
any random pair (X, 7) together with a function 4 such that

X=hXnY), (6.2)

and X and n are a priori independent. The MCMC algorithm for generating
from the posterior distribution p(f( , 1Y) is then given by

1. sample 5 from p(n|X, Y);
2. sample X from p(X|n,Y).

Another motivation behind the NCP is that the convergence properties of
sampling from p(f( In, Y) could be better than from p(X|n, Y) in many cases,
Papaspiliopoulos et al. (2003) [21].



As shown by the examples in Papaspiliopoulos et al. (2003 and 2007)
[21][22], neither CP nor NCP are uniformly effective and they possess com-
plementary strength that “when under the one parameterization, converges
slowly; under the other it often converges much faster”. Hence, the choice
of parameterization is largely depending on how informative the partic-
ular realization of the data is for X. Also note that both CP and NCP are
constructed based on the prior distributions of the model, and it would be
more effective if parameterizing the posterior and take data into account.
Two ways of data-based modifications were suggested in Papaspiliopoulos
etal. [22].

6.2 CORRECTING THE CP

Consider a linear parameterization
X=0m,X+umny (6.3)

where u(n,Y) = E(X|n) and 02(1], Y) = Var(X|n). This can be seen as a
first-order approximation of an NCP. When correcting this parameterization
based on the data, it is natural to replace p(n, Y) with i(n,Y) = E(XIn, Y)
and o?(n, Y) with 62(n,Y) = Var(X|n, Y). Then the new method allows the
data to decide how much “centering” should be given in parameterization
and as a result a NCP will be offered for “infinitely weak data” and a CP will
be offered for “infinitely strong data”. This parameterization method can be
interpreted as a “data-corrected” partially non-centered parameterization
(PNCP), Papaspiliopoulos et al. (2003) [21]. PNCP is sometimes difficult to
construct. When ji and 62 are not directly available, their approximation
form can be used.

6.3 CORRECTING THE NCP
To correct the NCP
X =hX,n) =hh(X*n,Y),n), (6.4)

it is natural to search for an approximate pivotal quantity X* and the func-
tion & in (6.4) often relieves hard constraints on X imposed by data. Several
examples are given in Papaspiliopoulos et al. (2007) [22].



7 ROBUST MCMC ALGORITHM FOR GLSM

Let’s consider the Poisson log-linear spatial model described in previous
section. In the model specification (3.2), note that the relationship of the
data Y, the latent variables S and the parameters 5 = (B,¢,02,«) (in the
case of matern correlation function) is naturally CP,

n—8—Y. (7.1)

However, since Langevin algorithm is sensitive to inhomogeneity of the
components with different variances, as mentioned by Roberts and Rosen-
thal (1998) [28], and considering the different characteristics of (S, B, 1) (for
sake of simplifying the notation, n = (¢, 02,x) will be used from now on),
they should be updated in three blocks. Thus, the goal is to find a parameter-
ization of (S, B, 1) so that after parameterization the posterior distributions of
components in three blocks are approximately uncorrelated and in best case
have equal variance and the dependence among three blocks are minimized.
The full parameterization should have the following form,

S — SS;B,m,Y)
B — BBinY) (7.2)
n — nnY)

and the resulting algorithm will updata S, § and 7j respectively.

7.1 GAUSSIAN APPROXIMATION OF p(S|y)

The desired parameterization mentioned before usually are not easy to
find except for multivariate Gaussian distribution. Thus, Christensen et al.
(2006) [8] suggested to use a Gaussian approximation of the distribution
p(Sly) and then orthogonalize and standardize the approximated distribu-
tion. By differentiating log p(S|y) twice with respect to S, the covariance
matrix of approximated Gaussian distribution is

S=C'+A)7! (7.3)

where X is the covariance matrix of S and A(S) is a diagonal matrix with
entries —%logp(yilS,-), i=1,..,n,and Sisa typical value of S (the mode of
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p(Sly) or p(y]S)). For the Poisson log-linear spatial model, § = arg max{p(y:1S:)},
i =1,..,n, is suggested in Christensen’s paper which leads to A(S);; = y;.

The reason for not using the mode of p(S|y) is because of heavy computa-
tional work required by numerically finding the mode in GLSM. And using

the current value of S as S during updating would involve an intractable
Jacobian matrix.

7.2 PARAMETERIZATION OF S AND f8

Let’s initially assume a normal prior for 8, p(f) ~ N(u,Q), and use a Tayler
expansion around §,

logp(y1S) = —-0.5(S— ) TAS)(S-8) +¢ (7.4)

where c is a constant and note that the first order terms cancel with the
choice of §$ = arg max{p(y;|S;)}. Then the logarithm of conditional distri-
bution of (S, ) will be

log p(S, BIn, y) =log p(y|S) +1og p(SIB,m) +1og p(p)
~—-05-9TAS)(S-8-05S-DBT="1(S-Dp)
-05B-w'Q N (B-w
=—05-SASS+Z DB TES-SAS)S+Z7DB))
—05(B-QDT=IEAG)S+Q 1 w)TQ (B
—QMDTEIEASS+Q ) (7.5)
where £ = (271 + A($))~! from (7.3) and
Q=@ '+DIE -z 18z Hhp) !
=Q'+DTAGZ+ 1) AS)D) . (7.6)

From (7.5), we can see that the parameterization

S=EYH)HSs-2AS)S+27IDB)) (7.7)
p=QVH 1 B-QDI=IEAGS+Q ) (7.8)

where 2172 and Q2 are Cholesky decomposition, will provide approxi-
mately uncorrelated components of Sy, ...,S,) and Bi,....B p with zero mean
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and unit variance! This parameterization of S in (7.7) can be interpreted as
“data-base” PNCP introduced in section 2.8.2. In this case, when the data
is “weak” A(-) = 0 resulting in § = (£/2)71(S — DB) which is NCP; and when
the data is “strong”, S~ AS)! resulting in

= (Var(S|y)") " (S~ EISIyD)

which is the standardized version of CP.

After parameterization, S and B are updated in two separate blocks by us-
ing Langevin algorithm. As mentioned in section 2.7.2, I2/n1'3 and 2/ p'/3
with [ = 1.65 are used as the variances of discretization respectively for §
and B to achieve optimal performance (the acceptance rates are tuned to
around 0.574).

7.3 PARAMETERIZATION OF 7

The posterior correlation between ¢ and o is commonly strong and requires
a parameterization to make algorithm efficient. Zhang (2004) [32] showed
that the two parameter o2 and ¢ for exponential covariance function are
not consistently estimable, but 0?/¢ is. Therefore o?/¢ should be used
for parameterization. And considering the posterior distribution of such
parameters usually are heavily skewed, the final parameterizations are

v1 =log(o?/¢p) (7.9)
vy =log(o). (7.10)

In more general cases, for Matern correlation family Zhang showed o?/¢?”
is consistently estimable, which leads to the parameterization v| = log(c?/¢?Y), v, =
log(o).

7.4 FLAT PRIORS

For GLMMs with a known singular correlation matrix for the random ef-
fects, the conditions for proper posterior are given in Sun et al. (2000) [30].
Gelfand and Sahu (1999) [14] studied general conditions for posterior prop-
erty with an improper prior for § in a GLM. The use of flat priors should

12



be taken care with caution, as demonstrated in Natarajan and McCulloch
(1995) [20] that an improper prior on the variance for the random effects of
GLMMs may lead to an improper posterior. However, Christencen (2002)
[7] provided the following proposition that guarantees a posterior under
certain conditions.

Consider a realization y = (y1,..., y») of the Poisson log-linear
spatial model, and assume that yy, ..., y,, are positive and y,;+1, .-, Yn
are zero. Let x.(¢) denote the correlation function of S; =
(S1,...,S;,) and D4 = (dy,...,d,)T the corresponding m x p de-
sign matrix. Suppose that ¢, 8, o are a priori independent with
densities 7w, mp, 7, Where 1, () o< 1 for all g € RP. Then the
posterior is proper if

1. D4 hasrank p;

2. x4+ (¢p) isinvertible for all ¢ € supp m4;

3. (IDI'x7Y (@)D, lIx4 ()27 4(¢p)is integrable on [0, 00];

4. [oPoP Ma(0)do < oo.

The suggested priors by Christencen are

Ta(P) o< 1/p,logp € [a, asl
7B o 1,BERP (7.11)
ne(0) o o lexp(-cl/o),0>0

which satisfy the proposition.

8 RESULTS FOR RONGELAP DATA

8.1 “FIX-SCAN” HASTINGS-WITHIN-GIBBS ALGORITHM

The Poisson log-spatial model with matern correlation function was as-
sumed for Rongelap data and Hastings-within-Gibbs algorithm was applied.
The first 1000 iterations were discarded as “burn-in” period, and every
100" iteration of the following 10000 iterations were stored which provided
a sample of 1000 values from the posterior distribution. The corresponding
results are shown in table 8.1 and figure 8.1, 8.2, 8.3.

13
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Figure 8.1: The Markov chains and approximated densities for posterior
samples of S, o2, ¢, « for Rongelap data.
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Table 8.1: Summary of the posterior samples of 8,02, ¢, k for Rongelap data.
parameter posterior mean posterior median 95% interval

B 1.00 1.00 [0.99, 1.01]
o? 1.82 1.59 [0.27, 5.27]
¢ 77.90 82.77 [14.45, 118.57]
K 1.02 0.99 [0.14, 1.91]
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Figure 8.2: The autocorrelation for posterior samples of 8,02, ¢, x for Ron-
gelap data.
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8.2 ROBUST MCMC ALGORITHM

Robust MCMC algorithm describe in last section was applied on Rongelap
data. The Poisson log-spatial model with powered exponential correlation
function is assumed and set x = 1 for simplicity. Total 10000 iterations
with 2000 burning-in and 10 thinning is used, because the Markov chains
converge much faster than when using “fix-scan” Hastings-within-Gibbs
algorithm and it is enough to reveal significant improvement.

From figures 8.4, 8.5 and 8.6, it is clear to see that mixing of the chains is
largely improved. The parameterization of f improves its convergence as
well as the mixing. To illustrate the effect of the parameterization of (¢, 0),
scatter plots between ¢ and o and between their parameterized values
vi1 =logo and v, =log % are plotted in figure 8.7. The heavy tails for ¢» and
o are reduced and the strong correlation between them ,0.933, is reduced
to -0.293.

Furthermore, Christensen et al. (2006) [8] compared the autocorrelation
performance among CP, NCP and robust MCMC algorithm. As shown in
figure 8.8, robust MCMC algorithm clearly outperform the other two, and
CP is superior to NCP in this case because Rongelap data have very large
counts with long recording periods ranging from 200 to 1800 seconds.

Table 8.2: Results for Rongelap data when using Robust MCMC algorithm.
parameter posterior mean posterior median 95% interval

B 1.82 1.82 [1.55, 2.03]
o2 0.37 0.35 [0.23, 0.78]
¢ 144.74 125.84 [72.76, 337.01]
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Figure 8.4: The Markov chains and approximated densities for Rongelap
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