
UNIVERSITY OF TEXAS AT SAN ANTONIO

Parallel Computing with R and How
to Use it on High Performance

Computing Cluster

Liang Jing

Nov. 2010

1

1 ABSTRACT

Methodological advances have led to much more computationally demand
in Statistical computing, such as Markov chain Monte Carlo (MCMC) al-
gorithms, bootstrapping, cross-validation, Monte Carlo simulation, etc.
And many areas of statistical applications are experiencing rapid growth in
the size of data sets. Parallel computing is a common approach to resolve
these problems. In this paper, four most promising packages for parallel
computing with R are introduced with examples of implementation. And
the procedure about how to use R in parallel way on high performance
computing cluster is illustrated.

2 INTRODUCTION

Multi-processor and multi-core computers, either in the form of personal
computer (PC) or high performance computing (HPC) cluster, have become
much more accessible nowadays. So it is desired and necessary to optimize
the calculation with the help of parallel computing techniques.

Though R, as one of the most successful languages in the past ten years,
has countless cheerful features, it suffers two major limitations: first, R
reads data into memory by default which limits the size of data to read and
could exhaust RAM by storing unnecessary data easily; second, R will only
utilize one processor under the default build regardless of the number of
available processors. However, there come a variety of packages developed
for the rescue:

• {Rmpi} by Yu 2002

• {snow} by Rossini et al. 2007

• {snowfall} by Knaus 2008

• {multicore} by Urbanek 2009

• more: {rpvm}, {papply}, {taskPR}, ...

In this paper, the first four packages are introduced shortly and illustrated
with sample codes about their usage. Then their implementation on high

2

performance computing (HPC) cluster is explained as well as the job man-
agement system on HPC. More details about parallel computing with R can
be found in Schmidberger et al. 2009.

3 PACKAGES

3.1 RMPI

Rmpi is a wrapper to message-passing interface (MPI) which is a standard-
ized message-passing system designed to function on a wide variety of
parallel computers. Rmpi provides a R interface on top of low-level MPI
functions so that R users don’t need to worry about details of MPI imple-
mentations. The package includes scripts to launch R instances on the
slaves from the master and data and functions will be sent to slaves. Then
the master will communicate with the slaves to perform the computation
and collect results. Besides, it also provides several R-specific functions,
such as mpi.parApply(), and some error handling mechanism to report
errors from the slaves to the master.

3.2 SNOW

snow is short for Simple Network of Workstations. It provides an interface
to several parallelization packages: MPI via {Rmpi}, NetWork Spaces (NWS)
via {nws}, Parallel Virtual Machine (PVM) via {rpvm}, and raw Sockets via
the operating system. This means it is possible to run the same code at a
cluster or PC with PVM, MPI or NWS.

To use this package, we need to start with creating a number of “workers”
of the specified type, “SOCK”, “PVM”, “MPI”, or “NWS” (details of these types
are not introduced here).

cl <- makeCluster(4, "MPI")

Then there are two types of functions in the package can be used for parallel
computing: intermediate level functions and high level functions.

3

INTERMEDIATE LEVEL FUNCTIONS

clusterCall(cl, fun, x) : asks each worker process to call function “fun”
with argument “x” and returns a vector of the results.

print(clusterCall(cl, function()

Sys.info()[c("nodename","machine")])

)

clusterCall(cl, min, rnorm(5))

clusterCall(cl, function(x) x, 1:2)

clusterApply(cl, vec, fun) : assigns one element of the vector “vec” to
each worker, has each worker call the function “fun” on its assigned
element, and collects the result. If there are more elements than
workers then workers are reused cyclically.

print(clusterApply(cl, 1:5, function(x)

Sys.info()[c("nodename","machine")])

)

clusterApply(cl, 1:10, function(x) print(1:x))

A load balancing version of clusterApply(cl, vec, fun) is

clusterApplyLB(cl, 1:10, function(x) print(1:x))

HIGH LEVEL FUNCTIONS

parLapply(), parApply(), ... These higher level functions are easy to im-
plement in terms of the intermediate level functions, for example clusterApply():

parLapply <- function(cl, x, fun, ...) {

y <- splitList(x, length(cl))

val <- clusterApply(cl, y, lapply, fun, ...)

docall(c, val)

}

Here splitList(x, length(cl)) uses splitList() to split the input into P
approximately equal-sized pieces for P worker processes.

splitList(1:10, 4)

4

A SIMPLE EXAMPLE

A common computing problem is to apply a specified function on each row
of the data. Here let’s simply apply mean() on each row of a big matrix. The
serial (nonparallel) way of this computation will be

n <- 1e5

s <- matrix(rnorm(n*100),n,)

1) serial way

v <- apply(s, 1, mean)

To use intermediate level functions in {snow}, we need to divide data,
then run each chuck on different workers.

2) parallel way by using clusterApply()

cl <- makeCluster(4, "MPI")

idx <- clusterSplit(cl, 1:dim(s)[1])

ssplt <- lapply(idx, function(i) s[i,])

v2 <- clusterApply(cl, ssplt, function(x) apply(x, 1, mean))

stopCluster(cl)

And using high level functions is just as simple as using common apply-like
functions. Sometimes, it could be slower than using intermediate level
function and require more memory.

3) parallel way by using parApply()

cl <- makeCluster(4, "MPI")

v3 <- parApply(cl, s, 1, mean)

stopCluster(cl)

A CROSS-VALIDATION EXAMPLE

Here is the core part of codes for cross-validation by using for loop.

Step 1: write code draft by using for loop

for(i in 1:d){

fitlm <- lm(speed~., cars[-ind[[i]],])

res[i] <- sum(fitlm$resid^2)

}

5

Aiming to use high level apply-like functions in {snow}, we need to con-
vert the code of for loop into a sequential mapping function such as lapply().

Step 2: rewrite code in terms of a sequential mapping function

such as lapply().

res2 <- unlist(lapply(1:d, function(i){

fitlm <- lm(speed~., cars[-ind[[i]],])

sum(fitlm$resid^2)

}

))

Then replace lapply()with its parallel version high level function parLapply().

Step 3: turn the code into a parallel function by adding a

cluster argument and replacing the call to lapply by a call

to parLapply()

cl <- makeCluster(4, "MPI")

res4 <- unlist(parLapply(cl, 1:d, function(i, ind){

fitlm <- lm(speed~., cars[-ind[[i]],])

sum(fitlm$resid^2)

}, ind

))

stopCluster(cl)

3.3 SNOWFALL

snowfall is a top-level wrapper to snow by adding an abstraction layer
for better usability. snowfall API is very similar to snow API and has the
following features:

• functions for loading packages and sources into clusters;

• functions for exchanging objects between clusters;

• changing cluster setting can be done from command line and does
not require changing R code;

• all wrapper functions contain extended error handling;

6

• all functions also work in sequential mode and R code can run in both
modes without modification;

• it is designed as a connector to the cluster management tool sfCluster
but can work without it.

Another wonderful feature of snowfall is load balancing which enables
faster clusters for further work instead of waiting for slower clusters when
they finish current work. Also, snowfall provides handy apply-like variants:
sfLapply(), sfSapply(), sfApply(), sfRapply(), sfCapply().

To use {snowfall}, we start with generating a number of “workers” similar
to using {snow}.

Initialisation of snowfall.

(if used with sfCluster, just call sfInit())

sfInit(parallel=TRUE, cpus=4, type="SOCK")

Then data sets and packages that are required for computation need to be
exported to each worker.

Exporting needed data and loading required

packages on workers.

sfExport("sir.adm")

sfLibrary(cmprsk)

And random number generators need to be set up for each worker.

Start network random number generator

(as "sample" is using random numbers)

sfClusterSetupRNG()

For the computation desired to be parallelized, write a wrapper function
to encapsulate the code. Here is an example of fitting randomly selected
data with linear regression.

Wrapper function, which can be parallelized.

wrapper <- function(idx) {

Output progress in worker logfile

cat("Current index: ", idx, "\n")

index <- sample(1:nrow(sir.adm), replace=TRUE)

7

temp <- sir.adm[index,]

fit <- lm(temp$time~ temp$status+ temp$pneu)

return(fit$coef)

}

Then use appropriate apply-like parallel function to perform the compu-
tation of wrapper function. And don’t forget to stop the cluster.

result <- sfLapply(1:run, wrapper)

sfStop()

3.4 MULTICORE

While previous three packages can be categorized as explicit parallelism
where users control most of cluster settings, multicore package offers im-
plicit parallelism where the messy work in setting up the system and dis-
tributing data is abstracted away. In multicore, all jobs share the full state of
R when parallel child instances are spawned and spawning uses the “fork”
system call or operating system specific equivalent. This mechanism results
in fast spawning and the advantage that no data or code needs to be copied
or initialized on child processes, but also limits its usage on Windows sys-
tem because Windows lacks the “fork” system call (experimental support
for Windows is available though).

Three major functions in multicore offer two ways to do parallel com-
putation. First, mclapply() is a parallel version of lapply() with extra pa-
rameters that control parallel settings. Second, parallel() and collect()

functions allow to create child processes, perform parallel computation
and retrieve the results in a more manual fashion. In addition, there are
low-level functions available but usually not recommended to use, such as
fork(), process() and sendMaster().

When using mclapply(), we can set up the number of processes to dis-
tribute the job in two ways: either set up the computational environment
outside;

options(cores=4) # number of cores

getOption("cores")

or set the parameter inside

8

mclapply(1:30, rnorm, mc.cores = 4, mc.set.seed = FALSE)

where the parameter mc.set.seed is used to decide whether use different
seeds for different processes.

To use parallel() and collect() mechanism, the suggested way is:
1) write a wrapper function that contains the procedure to be parallelized,

for example some big matrix computation

wrapper <- function(x){

A <- matrix(rnorm(1e6),1e3,)

det(solve(A)%*%A) }

2) use lapply() to start a number of parallel jobs that will run the wrapper
function

jobs <- lapply(1:10, function(k) parallel(wrapper(k)))

3) perform running and retrieve the results from all the processes

collect(jobs)

When executing collect(jobs), the jobs scheduled by parallel() will
spawn simultaneously and all available processors will be occupied to run
these jobs until all the jobs are done.

4 HPC CLUSTER

A typical HPC cluster usually consists of hundreds or thousands of proces-
sors, for example “cheetah.cbi.utsa.edu” cluster at UTSA has 392 processing
cores with 2 GB RAM per core. Considering it serves for many individual
clients to perform different computing jobs, a job management system (also
called job scheduler) is installed on the cluster to handle the job requests
from all the clients, schedule and assign available processors to perform
the jobs. To run our program in parallel way on cluster, we need to write
a job script that describes our request of computing resource (how many
processors we need? for how long?) and computing environment.

For Sun Grid Engine system installed on “cheetah.cbi.utsa.edu”, a sample
job script is shown below.

9

#!/bin/bash

The name of the job

#$ -N R-parallel

Giving the name of the output log file

#$ -o R_parallel.log

Combining output/error messages into one file

#$ -j y

One needs to tell the queue system

to use the current directory as the working directory

Or else the script may fail as it will execute

in your top level home directory /home/username

#$ -cwd

Here we tell the queue that we want the orte parallel

enivironment and request 5 slots

This option take the following form: -pe nameOfEnv min-Max

#$ -pe orte 5-10

Now come the commands to be executed

setenv PATH ${PATH}:/share/apps/gsl/bin

setenv LD_LIBRARY_PATH /share/apps/gsl/lib:${LD_LIBRARY_PATH}

/opt/openmpi/bin/mpirun -n $NSLOTS R --vanilla

< test_snow_bootstrap.R > test_snow_bootstrap.log

exit 0

After the job parameters are set up, the path to the libraries required for
the computation needs to be added into environment and then the R code
can be executed in batch mode.

Another way to utilize many processors on HPC cluster is submitting job
arrays which will be executed on different processors individually. A sample
job script is shown below.

#!/bin/bash

#$ -N R-array

#$ -o R_jobarray.log

10

#$ -j y

#$ -cwd

#$ -t 1-10

-M liang.jing@utsa.edu

-m e

setenv PATH ${PATH}:/share/apps/gsl/bin

setenv LD_LIBRARY_PATH /share/apps/gsl/lib:${LD_LIBRARY_PATH}

R --vanilla --args $SGE_TASK_ID < test_jobarray.R

where -t 1-10 describes how many times the program will be repeated
with the task ID 1-10 assigned to each job. By taking the parameter $SGE_TASK_ID
as an input argument into R, the R program will be able to perform different
codes for each running job. The corresponding R code should be in the
following form.

test_jobarray.R

myarg <- commandArgs()

id <- as.numeric(myarg[length(myarg)])

if(id == 1) {

...

}

if(id == 2) {

...

}

...

More details about how to write job scripts can be found on Oxford e-
Research Centre (http://www.oerc.ox.ac.uk/computing-resources/osc/
support/documentation-help/job-schedulers/).

11

