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Abstract
Model checking and selection in hierarchical models remain difficult problems
due to the unobservable latent process. Here Bayesian model checking meth-
ods are introduced and compared with a new model checking method based
on transformed residuals. Our simulation study reveals that Bayesian model
checking methods fails on GLSM due to difficulty of choosing appropriate di-
agnostic statistics and conservatism of posterior predictive p-value, while the
new model checking method provides more promising results.

Geostatistical Data
Each observation consists of two attributes:
• sampling location si, where the response is observed;
• observed value Yi, count of certain event.

Ronglap data set were collected
from Rongelap Island, 2500 miles
south-west of Hawaii. U.S. nuclear
weapons testing programme gener-
ated heavy fallout over the island in
the 1950s and Rongelap island has
been uninhabited since 1985. There
are 157 observations:
• yi is the photon emission count
• si identifies spatial location
• li is the time (in seconds) over

which yi was accumulated

R Package Development
I Features (under development)
• performs posterior sampling for parameter estimation, prediction, and

model checking in hierarchical models with correlated latent variables;
• C++ programs are seamlessly embedded to handle heavy computational

tasks of Markov chain generation and large matrices computation;
• parallel computing techniques are implemented to further speed up esti-

mation and prediction;
• results are displayed by a combination of numerical and graphical sum-

maries.

Hierarchical Model
Generalized linear spatial models were first proposed by Diggle et al.
(1998) and widely used since then,

Yi|θi
id∼ Pois(·|eθi), i = 1, ..., n;

θ|η ∼MVN(Dβ,Σ), Σij = σ2ρ(uij ;φ, κ)

η = (β, σ2, φ, κ)

• θ(s) is stationary Gaussian process;
• Dβ is the mean structure where D is covariate matrix (usually related to

locations) and β is coefficient vector;
• ρ(uij ;φ, κ) is a correlation function, determined by Euclidean distance
uij = ‖si − sj‖ between the ith and jth locations si, sj .
For example, matern family:

ρ(u) = [2κ−1Γ(κ)]−1(u/φ)κKκ(u/φ)

where Kκ(·) denotes a modified Bessel function of order κ.

Transformed Residual Checking

I Transformed residuals are defined as

ei = Φ−1(Fi(Yi))

where the CDF Fi(·) for GLSM comes from

f(yi|η)← f(y|η) =

∫ ∏
i

p(yi|θi)π(θ|η) dθ.

I Property

When
(1) the model is correctly specified and
(2) η is the true parameter,

transformed residuals will follow standard normal distribution.
Thus, by examining the normality of transformed residuals the information of
goodness of fit can be obtained.

I Comparing Distributions
• Graphical methods: QQ-plot, histogram, relative density plot

• Numerical methods: we propose to use Hellinger distance.
Hellinger distance is defined as

dH(P,Q) =
1

2

∫
|
√
dP −

√
dQ|2

where dP and dQ are two PDFs to be compared.

I The Procedure of Calculation
• calculate the Hellinger distance between empirical distribution of trans-

formed residuals and standard normal.

(eobs, N(0, 1))→ dobs

• obtain the “baseline distribution”, which is the distribution of Hellinger dis-
tances computed between theoretical standard normal distribution and empir-
ical distributions of standard normal samples.

x
(k)
i ∼ N(0, 1) i = 1, ..., n

(x(k), N(0, 1))→ d(k) k = 1, ..., N

• calculate “one-side p-value”, p = P (d ≥ dobs)

Small p-value rejects the normality of transformed residuals which means the
observed data is NOT compatible with the assumed model.

I Results

Mis-fit

p-value r.rate
“explt” vs. “expnt” 0.02 0.92
“expQt” vs. “expnt” 0.00 1.00
“expSin” vs. “expnt” 0.00 1.00

Correct-fit

p-value r.rate
“explt” vs. “explt” 0.26 0.01

“expQt” vs. “expQt” 0.28 0.01
“expSin” vs. “expSin” 0.16 0.08

Rongelap data

“expnt” “explt”

β̂ 1.83 (1.87, -0.49, 0.31)
σ̂ 0.55 0.60

φ̂ 0.02 0.03
p-value 0.027 0.000
r.rate 0.90 1.00

Weed data

“expnt” “explt”

β̂ 4.07 (4.35, 0.10, -1.51)
σ̂ 1.09 1.22

φ̂ 0.17 0.19
p-value 0.315 0.004
r.rate 0.005 1.00

I Conclusions
• Bayesian model checking can detect model failure only when the diagnostic

statistic is well chosen which is usually very difficult without deep understand-
ing of data.
• Transformed residual checking has much better performance. In the case

the mean structure is misspecified, model failures are successfully detected.
• Transformed residual checking suggests GLSM without any trend in mean

structure for “Weed” data and rejects GLSM with either linear trend or no
trend for “Rongelap” data.

I Improvement & Future Work

Problem: however, when the normality of e is rejected, we cannot determine
the rejection is due to condition (1) or (2), or both.

Goal: find a way to determine
• if condition (1) is satisfied?
• if yes, if condition (2) is satisfied?

Bayesian Model Checking
Bayarri and Castellanos (2007) stated that existing Bayesian model
checking methods can be seen to correspond to particular choices of the
following three components:
• a diagnostic statistic T (y) that summarizes a feature of the data
• a specified reference distribution h(t) that represents an “predictive”

distribution for T
• a way to measure conflict between tobs = T (yobs) and the reference

distribution

I Two ways to measure conflict

p− value = Ph(·)(T (Y ) ≥ T (yobs)), RPS = h(tobs)
supt{h(t)}

small values indicate incompatibility.

I The choices of reference distribution

h(t)← h(y) =

∫
p(y|θ)π∗(θ) dθ

thus, choosing h(t) amounts to choosing π∗(θ).
• Empirical Bayes distribution: πEBprior(θ) = π(θ|η = η̂)

• Posterior predictive distribution: π(θ,η|yobs) ∝ p(yobs|θ)π(θ,η)
• Partial posterior predictive distribution

πppp(θ) = π(θ|yobs\tobs) ∝ p(yobs|θ)π(θ)
p(tobs|θ)

I Results

Simulated Data vs. Assumed Model

T1 T2 T3 T4
“explt” vs. “explt” 0.49/0.97 0.53/0.99 0.47/0.99 0.12/0.58
“explt” vs. “expnt” 0.48/0.99 0.52/1.00 0.45/0.97 0.12/0.63
“expQt” vs. “expnt” 0.52/1.00 0.54/1.00 0.54/0.99 0.24/0.70
“expSin” vs. “expnt” 0.51/1.00 0.59/0.95 0.49/0.99 0.73/0.77

Robust MCMC Algorithm
Common Hastings-within-Gibbs algorithms fail to generate well-
behaviored posterior samples because of the large number of latent variables
that are highly correlated and influenced by response variables. We imple-
mented robust MCMC algorithm proposed by Christensen et al. (2006)

I Data-based parameterization
after parameterization, the components of θ̃, β̃, η̃ are approximately uncorre-
lated, and have zero means and unit variances

θ → θ̃(θ;β,η, Y )

β → β̃(β;η, Y )

η → η̃(η;Y )

I Langevin-Hastings algorithm
the gradient information of the target density is used into the proposal density
to improve convergence.

I Group Updating with Gibbs Sampler

for N iterations do

Update θ̃ ∼ p(θ̃|β̃,η, Y )1

Update β̃ ∼ p(β̃|θ̃,η, Y )2

Update η̃ ∼ p(η̃|θ̃, β̃, Y )3

I Prior
Christensen (2002) suggested flat prior and provided conditions under which
the posterior is proper.
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